1
|
Herta AC, Mengden L, Akin N, Billooye K, Coucke W, Leersum J, Cava-Cami B, Saucedo-Cuevas L, Klamt F, Smitz J, Anckaert E. Characterization of carbohydrate metabolism in in vivo and in vitro grown and matured mouse antral follicles. Biol Reprod 2022; 107:998-1013. [PMID: 35717588 DOI: 10.1093/biolre/ioac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/14/2022] [Accepted: 06/12/2022] [Indexed: 11/13/2022] Open
Abstract
Establishing an ideal human follicle culture system for oncofertility patients relies mainly on animal models since donor tissue is scarce and often of suboptimal quality. The in vitro system developed in our laboratory supports the growth of prepubertal mouse secondary follicles up to mature oocytes. Given the importance of glucose in preparing the oocyte for proper maturation, a baseline characterization of follicle metabolism both in the culture system and in vivo was carried out. Markers of glucose-related pathways (glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP), polyol pathway, hexosamine biosynthesis pathway (HBP)) as well as for the antioxidant capacity were measured in the different follicle cell types by both enzymatic activities (spectrophotometric detection) and gene expression (qPCR). This study confirmed that in vivo the somatic cells, mainly granulosa, exhibit intense glycolytic activity, while oocytes perform PPP. Throughout the final maturation step, oocytes in vivo and in vitro showed steady levels for all the key enzymes and metabolites. On the other hand, ovulation triggers a boost of pyruvate and lactate uptake in cumulus cells in vivo, consumes reduced nicotinamide adenine dinucleotide phosphate (NADPH) and increases TCA cycle and small molecules antioxidant capacity (SMAC) activities, while in vitro, the metabolic upregulation in all the studied pathways is limited. This altered metabolic pattern might be a consequence of cell exhaustion because of culture conditions, impeding cumulus cells to fulfil their role in providing proper support for acquiring oocyte competence. SUMMARY SENTENCE: In vitro cultured mouse follicles exhibit altered glycolytic activity and redox metabolism in the somatic compartment during meiotic maturation.
Collapse
Affiliation(s)
- Anamaria-Cristina Herta
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Lucia Mengden
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), 90035003, Brazil
| | - Nazli Akin
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Katy Billooye
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Wim Coucke
- Freelance statistician, Brugstraat 107, 3001 Heverlee, Belgium
| | - Julia Leersum
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Berta Cava-Cami
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Laura Saucedo-Cuevas
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), 90035003, Brazil
| | - Johan Smitz
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Ellen Anckaert
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| |
Collapse
|
2
|
Akin N, von Mengden L, Herta AC, Billooye K, van Leersum J, Cava-Cami B, Saucedo-Cuevas L, Klamt F, Smitz J, Anckaert E. Glucose metabolism characterization during mouse in vitro maturation identifies alterations in cumulus cells†. Biol Reprod 2021; 104:902-913. [PMID: 33480981 DOI: 10.1093/biolre/ioab008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 01/01/2023] Open
Abstract
In vitro maturation (IVM) is an assisted reproduction technique with reduced hormone-related side-effects. Several attempts to implement IVM in routine practice have failed, primarily due to its relatively low efficiency compared with conventional in vitro fertilization (IVF). Recently, capacitation (CAPA)-IVM-a novel two-step IVM method-has improved the embryology outcomes through synchronizing the oocyte nuclear and cytoplasmic maturation. However, the efficiency gap between CAPA-IVM and conventional IVF is still noticeable especially in the numerical production of good quality embryos. Considering the importance of glucose for oocyte competence, its metabolization is studied within both in vivo and CAPA-IVM matured mouse cumulus-oocyte-complexes (COCs) through direct measurements in both cellular compartments, from transcriptional and translational perspectives, to reveal metabolic shortcomings within the CAPA-IVM COCs. These results confirmed that within in vivo COC, cumulus cells (CCs) are highly glycolytic, whereas oocytes, with low glycolytic activity, are deviating their glucose towards pentose phosphate pathway. No significant differences were observed in the CAPA-IVM oocytes compared with their in vivo counterparts. However, their CCs exhibited a precocious increase of glycolytic activity during the pre-maturation culture step and activity was decreased during the IVM step. Here, specific alterations in mouse COC glucose metabolism due to CAPA-IVM culture were characterized using direct measurements for the first time. Present data show that, while CAPA-IVM CCs are able to utilize glucose, their ability to support oocytes during final maturation is impaired. Future CAPA-IVM optimization strategies could focus on adjusting culture media energy substrate concentrations and/or implementing co-culture strategies.
Collapse
Affiliation(s)
- Nazli Akin
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Lucia von Mengden
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil
| | - Anamaria-Cristina Herta
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Katy Billooye
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Julia van Leersum
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Berta Cava-Cami
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laura Saucedo-Cuevas
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Fabio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil
| | - Johan Smitz
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ellen Anckaert
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
3
|
Ino K, Şen M, Shiku H, Matsue T. Micro/nanoelectrochemical probe and chip devices for evaluation of three-dimensional cultured cells. Analyst 2018; 142:4343-4354. [PMID: 29106427 DOI: 10.1039/c7an01442b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we present an overview of recent research progress in the development of micro/nanoelectrochemical probe and chip devices for the evaluation of three-dimensional (3D) cultured cells. First, we discuss probe devices: a general outline, evaluation of O2 consumption, enzyme-modified electrodes, evaluation of endogenous enzyme activity, and the collection of cell components from cell aggregates are discussed. The next section is focused on integrated chip devices: a general outline, electrode array devices, smart electrode array devices, droplet detection of 3D cultured cells, cell manipulation using dielectrophoresis (DEP), and electrodeposited hydrogels used for fabrication of 3D cultured cells on chip devices are discussed. Finally, we provide a summary and discussion of future directions of research in this field.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11-406 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Mustafa Şen
- Department of Biomedical Engineering, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11-406 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
4
|
Shiku H. Electrochemical Biosensing System for Single Cells, Cellular Aggregates and Microenvironments. ANAL SCI 2018; 35:29-38. [PMID: 30473568 DOI: 10.2116/analsci.18sdr01] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Applications of electrochemical biosensing for surveying intact cells and tissues have been focus of attention. Two experimental approaches have been used when performing amperometric measurements on biological cells, the stylus-type microelectrode probes and the electrode-integrated microdevices based on lithographic technologies. For the probe scanning approach, various types of microsensors were developed to monitor localized physical or chemical natures at a variety of surfaces in situ under wet conditions. Scanning electrochemical microscopy (SECM) has been applied for monitoring local oxygen, enzyme activity, and collection of transcripts. For the non-scanning type of approach, electrode array devices allow very rapid response, parallel monitoring, and multi-analyte assay. Sveral topics of on-chip-culture system were introduced especially concerning on gene expression monitoring by reporter system and reconstruction of in vivo-like nature by controlling microenvironments. Electrochemical reporter assay has been demonstrated to monitor the gene expression process of the gene-modified cultured cells. Long-term monitoring of cellular function of spheroids and three dimensionally-cultured cells were carried out by controlling microenvironments on the cellular chip.
Collapse
Affiliation(s)
- Hitoshi Shiku
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University
| |
Collapse
|
5
|
SHIKU H. Characterization System of Embryos, Embryoid Bodies and Multicellular Spheroids Based on an Electrochemical Method. BUNSEKI KAGAKU 2018. [DOI: 10.2116/bunsekikagaku.67.653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018; 98:3-58. [PMID: 29167330 PMCID: PMC5866357 DOI: 10.1152/physrev.00001.2017] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
7
|
Takahashi Y, Kumatani A, Shiku H, Matsue T. Scanning Probe Microscopy for Nanoscale Electrochemical Imaging. Anal Chem 2016; 89:342-357. [DOI: 10.1021/acs.analchem.6b04355] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yasufumi Takahashi
- Division
of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Akichika Kumatani
- Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Graduate
School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Hitoshi Shiku
- Department
of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Tomokazu Matsue
- Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Graduate
School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
8
|
Nashimoto Y, Takahashi Y, Zhou Y, Ito H, Ida H, Ino K, Matsue T, Shiku H. Evaluation of mRNA Localization Using Double Barrel Scanning Ion Conductance Microscopy. ACS NANO 2016; 10:6915-6922. [PMID: 27399804 DOI: 10.1021/acsnano.6b02753] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Information regarding spatial mRNA localization in single cells is necessary for a better understanding of cellular functions in tissues. Here, we report a method for evaluating localization of mRNA in single cells using double-barrel scanning ion conductance microscopy (SICM). Two barrels in a nanopipette were filled with aqueous and organic electrolyte solutions and used for SICM and as an electrochemical syringe, respectively. We confirmed that the organic phase barrel could be used to collect cytosol from living cells, which is a minute but sufficient amount to assess cellular status using qPCR analysis. The water phase barrel could be used for SICM to image topography with subcellular resolution, which could be used to determine positions for analyzing mRNA expression. This system was able to evaluate mRNA localization in single cells. After puncturing the cellular membrane in a minimally invasive manner, using SICM imaging as a guide, we collected a small amount cytosol from different positions within a single cell and showed that mRNA expression depends on cellular position. In this study, we show that SICM imaging can be utilized for the analysis of mRNA localization in single cells. In addition, we fully automated the pipet movement in the XYZ-directions during the puncturing processes, making it applicable as a high-throughput system for collecting cytosol and analyzing mRNA localization.
Collapse
Affiliation(s)
| | - Yasufumi Takahashi
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) , Saitama 332-0012, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
SHIKU H, AOKI N, ARAI T, ZHOU Y, Y. INOUE K, INO K, MATSUE T. Sequential Monitoring of Oxygen Consumption Rate of Mouse Embryoid Bodies in Glucose-Depleted Solution. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hitoshi SHIKU
- Graduate School of Environmental Studies, Tohoku University
- Department of Engineering, Tohoku University
| | - Nana AOKI
- Department of Engineering, Tohoku University
| | - Toshiharu ARAI
- Graduate School of Environmental Studies, Tohoku University
| | - Yuanshu ZHOU
- WPI-Advanced Institute for Materials Research, Tohoku University
| | - Kumi Y. INOUE
- Graduate School of Environmental Studies, Tohoku University
| | - Kosuke INO
- Graduate School of Environmental Studies, Tohoku University
- Department of Engineering, Tohoku University
| | - Tomokazu MATSUE
- Graduate School of Environmental Studies, Tohoku University
- Department of Engineering, Tohoku University
- WPI-Advanced Institute for Materials Research, Tohoku University
| |
Collapse
|