1
|
Kole K, Gupta AM, Chakrabarti J. Conformational stability and order of Hoogsteen base pair induced by protein binding. Biophys Chem 2023; 301:107079. [PMID: 37523944 DOI: 10.1016/j.bpc.2023.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Several experimental studies have shown that Hoogsteen (HG) base pair (bp) stabilizes in the presence of proteins. The molecular mechanism underlying this stabilization is not well known. This leads us to examine the stability of the HG bp in duplex DNA using all-atom molecular dynamics simulation in both the absence and presence of proteins. We use conformational thermodynamics to investigate the stability of a HG bp in duplex DNA at the molecular level. We compute the changes in the conformational free energy and entropy of DNA when DNA adopts a HG bp in its bp sequence rather than a Watson-Crick (WC) bp in both naked DNA and protein-bound DNA complex. We observe that the presence of proteins stabilizes and organizes the HG bp and the entire DNA duplex. Sugar-phosphate, sugar-base, and sugar-pucker torsion angles play key roles in stabilizing and ordering the HG bp in the protein-bound DNA complex.
Collapse
Affiliation(s)
- Kanika Kole
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Aayatti Mallick Gupta
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.
| | - Jaydeb Chakrabarti
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
2
|
Bowman JD, Lindert S. Computational Studies of Cardiac and Skeletal Troponin. Front Mol Biosci 2019; 6:68. [PMID: 31448287 PMCID: PMC6696891 DOI: 10.3389/fmolb.2019.00068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Troponin is a key regulatory protein in muscle contraction, consisting of three subunits troponin C (TnC), troponin I (TnI), and troponin T (TnT). Calcium association to TnC initiates contraction by causing a series of dynamic and conformational changes that allow the switch peptide of TnI to bind and subsequently cross bridges to form between the thin and thick filament of the sarcomere. Owing to its pivotal role in contraction regulation, troponin has been the focus of numerous computational studies over the last decade. These studies elegantly supplemented a large volume of experimental work and focused on the structure, dynamics and function of the whole troponin complex, individual subunits, and even on segments of the thin filament. Molecular dynamics, Brownian dynamics, and free energy simulations have been used to elucidate the conformational dynamics and underlying free energy landscape of troponin, calcium, and switch peptide binding, as well as the effect of disease mutations, small molecules and post-translational modifications such as phosphorylation. Frequently, simulations have been used to confirm or explain experimental observations. Computer-aided drug discovery tools have been employed to identify novel potential calcium sensitizing agents binding to the TnC-TnI interface. Finally, Markov modeling has contributed to simulating contraction within the sarcomere on the mesoscale. Here we are reviewing and classifying the existing computational work on troponin and its subunits, outline current gaps in simulations elucidating troponin's role in contraction and suggest potential future developments in the field.
Collapse
Affiliation(s)
- Jacob D Bowman
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Sikdar S, Ghosh M, Adak A, Chakrabarti J. Structural and dynamic responses of calcium ion binding loop residues in metallo-proteins. Biophys Chem 2019; 252:106207. [PMID: 31252378 DOI: 10.1016/j.bpc.2019.106207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Conformational changes in bio-molecular systems are fundamental to several biological processes. It is important to study changes in responses of underlying microscopic variables, like dihedral angles as conformational change takes place. We perform all-atom simulations and modelling via Langevin equation to illustrate the changes in structural and dynamic responses of dihedral angles of calcium ion binding residues of different proteins in metal ion free (apo) and bound (holo) states. The equilibrium distributions of dihedral angles in apo- and holo-states represent structural response. Our studies show the presence of dihedrals with multiple peaks (isomeric states) separated by barrier heights is more frequent in apo- than in holo-state. The relaxation time-scale of dihedral fluctuations is found to increase linearly with decreasing barrier height due to more frequent barrier re-crossing events. The slow kinetic response of the dihedrals also contributes to slowing down of macro-scale fluctuations, which may be useful to understand kinetics of various bio-molecular processes.
Collapse
Affiliation(s)
- Samapan Sikdar
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| | - Mahua Ghosh
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - Arunava Adak
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - J Chakrabarti
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India; The Thematic Unit of Excellence on Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
4
|
Mondal M, Chakrabarti J, Ghosh M. Molecular dynamics simulations on interaction between bacterial proteins: Implication on pathogenic activities. Proteins 2017; 86:370-378. [PMID: 29265504 DOI: 10.1002/prot.25446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 11/12/2022]
Abstract
We perform molecular dynamics simulation studies on interaction between bacterial proteins: an outer-membrane protein STY3179 and a yfdX protein STY3178 of Salmonella Typhi. STY3179 has been found to be involved in bacterial adhesion and invasion. STY3178 is recently biophysically characterized. It is a soluble protein having antibiotic binding and chaperon activity capabilities. These two proteins co-occur and are from neighboring gene in Salmonella Typhi-occurrence of homologs of both STY3178 and STY3179 are identified in many Gram-negative bacteria. We show using homology modeling, docking followed by molecular dynamics simulation that they can form a stable complex. STY3178 belongs to aqueous phase, while the beta barrel portion of STY3179 remains buried in DPPC bilayer with extra-cellular loops exposed to water. To understand the molecular basis of interaction between STY3178 and STY3179, we compute the conformational thermodynamics which indicate that these two proteins interact through polar and acidic residues belonging to their interfacial region. Conformational thermodynamics results further reveal instability of certain residues in extra-cellular loops of STY3179 upon complexation with STY3178 which is an indication for binding with host cell protein laminin.
Collapse
Affiliation(s)
- Manas Mondal
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata, India.,The Thematic Unit of Excellence on Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata, India
| | - Mahua Ghosh
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata, India
| |
Collapse
|
5
|
Maganti L, Ghosh M, Chakrabarti J. Molecular dynamics studies on conformational thermodynamics of Orai1-calmodulin complex. J Biomol Struct Dyn 2017; 36:3411-3419. [PMID: 28978262 DOI: 10.1080/07391102.2017.1388289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular understanding of bio-macromolecular binding is a challenging task due to large sizes of the molecules and presence of variety of interactions. Here, we study the molecular mechanism of calmodulin (CaM) binding to Orai1 that regulates Ca2+-dependent inactivation process in eukaryotic cells. Although experimental observations indicate that Orai1 binds to the C-terminal of Ca2+-loaded CaM, it is not decisive if N-domain of CaM interacts with Orai1. We address the issue of interaction of different domains of CaM with Orai1 using conformational thermodynamic changes, computed from histograms of dihedral angles over simulated trajectories of CaM, CaM-binding domain of Orai1 and complexes of CaM with Orai1. The changes for all residues of both C and N terminal domains of CaM upon Orai1 binding are compared. Our analysis shows that Orai1binds to both C-terminal and N-terminal domains of CaM, indicating 1:2 stoichiometry. The Orai1 binding to N-terminal domain of CaM is less stable than that to the C-terminal domain. The binding residues are primarily hydrophobic. These observations are in qualitative agreement to the experiments. The conformational thermodynamic changes thus provide a useful computational tool to provide atomic details of interactions in bio-macromolecular binding.
Collapse
Affiliation(s)
- Lakshmi Maganti
- a Department of Chemical, Biological and Macromolecular Sciences , S. N. Bose National Centre for Basic Sciences , Sector III, Block JD, Salt Lake, Kolkata 700106 , India
| | - Mahua Ghosh
- a Department of Chemical, Biological and Macromolecular Sciences , S. N. Bose National Centre for Basic Sciences , Sector III, Block JD, Salt Lake, Kolkata 700106 , India
| | - J Chakrabarti
- a Department of Chemical, Biological and Macromolecular Sciences , S. N. Bose National Centre for Basic Sciences , Sector III, Block JD, Salt Lake, Kolkata 700106 , India.,b Unit of Nanoscience and Technology-II and The Thematic Unit of Excellence on Computational Materials Science , S. N. Bose National Centre for Basic Sciences , Sector III, Block JD, Salt Lake, Kolkata 700106 , India
| |
Collapse
|
6
|
Saha P, Sikdar S, Manna C, Chakrabarti J, Ghosh M. SDS induced dissociation of STY3178 oligomer: experimental and molecular dynamics studies. RSC Adv 2017. [DOI: 10.1039/c6ra25737b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
STY3178 the yfdX Salmonella Typhi protein dissociates reversibly in presence of sodium dodecyl sulphate from trimer to monomer.
Collapse
Affiliation(s)
- Paramita Saha
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Samapan Sikdar
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Camelia Manna
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Jaydeb Chakrabarti
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Mahua Ghosh
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| |
Collapse
|
7
|
Saha P, Sikdar S, Chakrabarti J, Ghosh M. Response to chemical induced changes and their implication in yfdX proteins. RSC Adv 2016. [DOI: 10.1039/c6ra21913f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|