1
|
Odunsi A, Kapitonova MA, Woodward G, Rahmani E, Ghelichkhani F, Liu J, Rozovsky S. Selenoprotein K at the intersection of cellular pathways. Arch Biochem Biophys 2025; 764:110221. [PMID: 39571956 PMCID: PMC11750610 DOI: 10.1016/j.abb.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/08/2024]
Abstract
Selenoprotein K (selenok) is linked to the integrated stress response, which helps cells combat stressors and regain normal function. The selenoprotein contains numerous protein interaction hubs and post-translational modification sites and is involved in protein palmitoylation, vesicle trafficking, and the resolution of ER stress. Anchored to the endoplasmic reticulum (ER) membrane, selenok interacts with protein partners to influence their stability, localization, and trafficking, impacting various cellular functions such as calcium homeostasis, cellular migration, phagocytosis, gene expression, and immune response. Consequently, selenok expression level is linked to cancer and neurodegenerative diseases. Because it contains the reactive amino acid selenocysteine, selenok is likely to function as an enzyme. However, highly unusual for enzymes, the protein segment containing the selenocysteine lacks a stable secondary or tertiary structure, yet it includes multiple interaction sites for protein partners and post-translational modifications. Currently, the reason(s) for the presence of the rare selenocysteine in selenok is not known. Furthermore, of selenok's numerous interaction sites, only some have been sufficiently characterized, leaving many of selenok's potential protein partners to be discovered. In this review, we explore selenok's role in various cellular pathways and its impact on human health, thereby highlighting the links between its diverse cellular functions.
Collapse
Affiliation(s)
- Atinuke Odunsi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - George Woodward
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jun Liu
- Asieris Pharmaceuticals, Palo Alto, CA, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
2
|
Sharma A, Colonna G. System-Wide Pollution of Biomedical Data: Consequence of the Search for Hub Genes of Hepatocellular Carcinoma Without Spatiotemporal Consideration. Mol Diagn Ther 2021; 25:9-27. [PMID: 33475988 PMCID: PMC7847983 DOI: 10.1007/s40291-020-00505-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Biomedical institutions rely on data evaluation and are turning into data factories. Big-data storage centers, supercomputing systems, and increased algorithmic efficiency allow us to analyze the ever-increasing amount of data generated every day in biomedical research centers. In network science, the principal intrinsic problem is how to integrate the data and information from different experiments on genes or proteins. Data curation is an essential process in annotating new functional data to known genes or proteins, undertaken by a biobank curator, which is then reflected in the calculated networks. We provide an example of how protein-protein networks today have space-time limits. The next step is the integration of data and information from different biobanks. Omics data and networks are essential parts of this step but also have flawed protocols and errors. Consider data from patients with cancer: from biopsy procedures to experimental tests, to archiving methods and computational algorithms, these are continuously handled so require critical and continuous "updates" to obtain reproducible, reliable, and correct results. We show, as a second example, how all this distorts studies in cellular hepatocellular carcinoma. It is not unlikely that these flawed data have been polluting biobanks for some time before stringent conditions for the veracity of data were implemented in Big data. Therefore, all this could contribute to errors in future medical decisions.
Collapse
Affiliation(s)
- Ankush Sharma
- Department of Biosciences, University of Oslo, Oslo, Norway.
- Department of Informatics, University of Oslo, Oslo, Norway.
- Institute of Cancer Research, Institute of Clinical medicine, University of Oslo, Oslo, Norway.
| | - Giovanni Colonna
- Medical Informatics, AOU-Vanvitelli, Università della Campania, Naples, Italy
| |
Collapse
|
3
|
Structural analysis of human SEPHS2 protein, a selenocysteine machinery component, over-expressed in triple negative breast cancer. Sci Rep 2019; 9:16131. [PMID: 31695102 PMCID: PMC6834634 DOI: 10.1038/s41598-019-52718-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022] Open
Abstract
Selenophosphate synthetase 2 (SEPHS2) synthesizes selenide and ATP into selenophosphate, the selenium donor for selenocysteine (Sec), which is cotranslationally incorporated into selenoproteins. The action and regulatory mechanisms of SEPHS2 as well as its role in carcinogenesis (especially breast cancer) remain ambiguous and need further clarification. Therefore, lacking an experimentally determined structure for SEPHS2, we first analyzed the physicochemical properties of its sequence, modeled its three-dimensional structure and studied its conformational behavior to identify the key residues (named HUB nodes) responsible for protein stability and to clarify the molecular mechanisms by which it induced its function. Bioinformatics analysis evidenced higher amplification frequencies of SEPHS2 in breast cancer than in other cancer types. Therefore, because triple negative breast cancer (TNBC) is biologically the most aggressive breast cancer subtype and its treatment represents a challenge due to the absence of well-defined molecular targets, we evaluated SEPHS2 expression in two TNBC cell lines and patient samples. We demonstrated mRNA and protein overexpression to be correlated with aggressiveness and malignant tumor grade, suggesting that this protein could potentially be considered a prognostic marker and/or therapeutic target for TNBC.
Collapse
|
4
|
Sadeghi S, Poorebrahim M, Rahimi H, Karimipoor M, Azadmanesh K, Khorramizadeh MR, Teimoori-Toolabi L. In silico studying of the whole protein structure and dynamics of Dickkopf family members showed that N-terminal domain of Dickkopf 2 in contrary to other Dickkopfs facilitates its interaction with low density lipoprotein receptor related protein 5/6. J Biomol Struct Dyn 2018; 37:2564-2580. [DOI: 10.1080/07391102.2018.1491891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mansour Poorebrahim
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Stepanova E, Gygi SP, Paulo JA. Filter-Based Protein Digestion (FPD): A Detergent-Free and Scaffold-Based Strategy for TMT Workflows. J Proteome Res 2018; 17:1227-1234. [PMID: 29402085 PMCID: PMC5984590 DOI: 10.1021/acs.jproteome.7b00840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-throughput proteome profiling requires thorough optimization to achieve comprehensive analysis. We developed a filter aided sample preparation (FASP)-like, detergent-free method, termed Filter-Based Protein Digestion (FPD). We compared FPD to protein extraction methods commonly used in isobaric tag-based proteome profiling, namely trichloroacetic acid (TCA) and chloroform-methanol (C-M) precipitation. We divided a mammalian whole cell lysate from the SH-SY5Y neuroblastoma cell line for parallel protein processing with TCA (n = 3), C-M (n = 2), and FPD using either 10 kDa (n = 3) or 30 kDa (n = 3) molecular weight cutoff membranes. We labeled each sample with tandem mass tag (TMT) reagents to construct a TMT11-plex experiment. In total, 8654 proteins were quantified across all samples. Pairwise comparisons showed very little deviation for individual protein abundance measurements between the two FPD methods, whereas TCA and FPD showed the most difference. Specifically, membrane proteins were more readily quantified when samples were processed using TCA precipitation than other methods tested. However, globally, only 4% of proteins differed greater than 4-fold in the most divergent pair of protein extraction methods (i.e., FPD10 and TCA). We conclude that the detergent-free FPD strategy, particularly using the faster-flowing 30 kDa filter, is a seamless alteration to high-throughput TMT workflows.
Collapse
Affiliation(s)
- Ekaterina Stepanova
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
6
|
Pujols J, Peña-Díaz S, Ventura S. AGGRESCAN3D: Toward the Prediction of the Aggregation Propensities of Protein Structures. Methods Mol Biol 2018; 1762:427-443. [PMID: 29594784 DOI: 10.1007/978-1-4939-7756-7_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein aggregation is responsible for the onset and spread of many human diseases, ranging from neurodegenerative disorders to cancer and diabetes. Moreover, it is one of the major bottlenecks for the production of protein-based therapeutics such as antibodies or enzymes. AGGRESCAN3D (A3D) is a web server aimed to identify and evaluate structural aggregation prone regions, overcoming the limitations of sequence-based algorithms in the prediction of the aggregation propensity of globular proteins. A3D allows the redesign of protein solubility by predicting in silico the impact of mutations and protein conformational fluctuations on the aggregation of native polypeptides.
Collapse
Affiliation(s)
- Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
7
|
Polo A, Nittoli C, Crispo A, Langastro T, Cocco S, Severino L, De Laurentiis M, Ciliberto G, Montella M, Budillon A, Costantini S. An interaction network approach to study the correlation between endocrine disrupting chemicals and breast cancer. MOLECULAR BIOSYSTEMS 2017; 13:2687-2696. [PMID: 29072741 DOI: 10.1039/c7mb00489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are natural or synthetic exogenous substances affecting human health. Although present at low concentrations in the environment, they can cause a broad range of negative effects on the endocrine functions by mimicking the action of steroid hormones due to their structural similarity. Hormonal unbalance can play an important role in carcinogenesis at any stage of disease. In the case of the breast cancer, EDCs directly affect the transformation of normal breast cells into cancer cells by interfering with hormonal regulation and by inducing the alteration of factors that regulate gene expression. The principal aims of this work were to study the interaction networks of proteins modulated in breast cancer by either environmental EDCs or mycotoxins, and to identify the proteins with the strongest coordination role defined as hub nodes. Our studies evidenced the presence of seven and six hub proteins in two EDCs and mycotoxins networks, respectively. Then, by merging the two networks, we identified that three hub nodes (BCL2, ESR2 and CTNNB1) in the environmental EDCs network show direct interactions with three hub nodes (CASP8, RELA and MKI67) in the mycotoxins network. These data highlighted that two networks are linked through proteins involved in the apoptosis regulation and in processes related to cell proliferation and survival, and, thus, in breast cancer progression.
Collapse
Affiliation(s)
- Andrea Polo
- Epidemiology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mercurio FA, Costantini S, Di Natale C, Pirone L, Guariniello S, Scognamiglio PL, Marasco D, Pedone EM, Leone M. Structural investigation of a C-terminal EphA2 receptor mutant: Does mutation affect the structure and interaction properties of the Sam domain? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1095-1104. [DOI: 10.1016/j.bbapap.2017.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/03/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022]
|
9
|
Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium 2017; 70:76-86. [PMID: 28506443 DOI: 10.1016/j.ceca.2017.05.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/30/2017] [Indexed: 01/07/2023]
Abstract
The human selenoprotein family contains 25 members that share the common feature of containing the amino acid, selenocysteine (Sec). Seven selenoproteins are localized to the endoplasmic reticulum (ER) and exhibit different structural features contributing to a range of cellular functions. Some of these functions are either directly or indirectly related to calcium (Ca2+) flux or homeostasis. The presence of the unique Sec residue within these proteins allows some to exert oxidoreductase activity, while the function of the Sec in other ER selenoproteins remains unclear. Some functional insight has been achieved by identifying domains within the ER selenoproteins or through the identification of binding partners. For example, selenoproteins K and N (SELENOK AND SELENON) have been characterized through interactions detected with the inositol 1,4,5-triphosphate receptors (IP3Rs) and the SERCA2b pump, respectively. Others have been linked to chaperone functions related to ER stress or Ca2+ homeostasis. This review summarizes the details gathered to date regarding the ER-resident selenoproteins and their effect on Ca2+ regulated pathways and outcomes in cells.
Collapse
|
10
|
Zhu SY, Li XN, Sun XC, Lin J, Li W, Zhang C, Li JL. Biochemical characterization of the selenoproteome in Gallus gallus via bioinformatics analysis: structure–function relationships and interactions of binding molecules. Metallomics 2017; 9:124-131. [DOI: 10.1039/c6mt00254d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Polo A, Guariniello S, Colonna G, Ciliberto G, Costantini S. A study on the structural features of SELK, an over-expressed protein in hepatocellular carcinoma, by molecular dynamics simulations in a lipid-water system. MOLECULAR BIOSYSTEMS 2016; 12:3209-22. [PMID: 27524292 DOI: 10.1039/c6mb00469e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human SELK is a small trans-membrane selenoprotein characterized by a single trans-membrane helix, while the N-terminal region protrudes into the lumen and the long C-terminal domain into the cytoplasm. SELK is over-expressed in some cancers, like hepatocellular carcinoma; however its precise role in cancer development is presently unknown. SELK is involved in promoting the calcium flux, catalyzing palmitoylation reactions and protein degradation in the endoplasmic reticulum (ER). Therefore, this protein should bind many different proteins like p97/VCP in the supramolecular complex involved in the ER degradation pathway. To study the structural features of SELK in the membrane, we have modeled the protein and then subjected it to molecular dynamics simulations in a lipid-water system. The model shows a N-terminal domain with three β-strands and a short helix, a well-defined trans-membrane helix and a C-terminal domain that lacks a persistent secondary structure and contains long disordered regions. The trajectory analysis during the simulation evidences that: (i) the N-terminal region explores a limited conformational space and is stabilized by intra-peptide H-bonds as well with membrane lipids and water, (ii) the trans-membrane helix was found to be quite stable and (iii) the disordered C-terminal region is stabilized by H-bonds with clustered water molecules as well as by rapidly interchanging intra-peptidic H-bonds, with a structural tendency to compact around the four HUB residues found for this domain. Moreover, N-terminal and C-terminal clusters are distributed differently in the conformational space suggesting that their dynamics are coupled complicatedly through the membrane. Further analyses have shown that the N-terminal has a tendency to pivot around the insertion with the TM-helix through the fluctuations of the three β-strands, which, in turn, show features similar to WW-domains. These results will be useful to study the SELK, SELS and VCP complex representing an interesting druggable target for cancer.
Collapse
Affiliation(s)
- Andrea Polo
- Servizio di Informatica Medica, Azienda Ospedaliera Universitaria, Seconda Università di Napoli, Napoli, Italy
| | | | | | | | | |
Collapse
|