1
|
Wang L, Geng Z, Liu Y, Cao L, Liu Y, Zhang H, Bi Y, Lu J. Multi-Modal Design, Synthesis, and Biological Evaluation of Novel Fusidic Acid Derivatives. Molecules 2025; 30:1983. [PMID: 40363790 PMCID: PMC12073777 DOI: 10.3390/molecules30091983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Fusidic acid (FA), a tetracyclic triterpenoid, has been approved to treat methicillin-resistant Staphylococcus aureus (MRSA) infections. However, there are few reports about FA derivatives with high efficacy superior to FA, manifesting the difficulty of discovering the derivatives based on experience-based drug design. In this study, we employed a stepwise method to discover novel FA derivatives. First, molecular dynamics (MD) simulations were performed to identify the molecular mechanism of FA against elongation factor G (EF-G) and drug resistance. Then, we utilized a scaffold decorator to design novel FA derivatives at the 3- and 21-positions of FA. The ligand-based and structure-based screening models, including Chemprop and RTMScore, were employed to identify promising hits from the generated set. Ten generated FA derivatives with high efficacy in the Chemprop and RTMScore models were synthesized for in vitro testing. Compounds 4 and 10 demonstrated a 2-fold increase in potency against MRSA strains compared to FA. This study highlights the significant impact of AI-based methods on the design of novel FA derivatives with drug efficacy, which provides a new approach for drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (L.W.); (Z.G.); (Y.L.); (L.C.); (Y.L.); (H.Z.)
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (L.W.); (Z.G.); (Y.L.); (L.C.); (Y.L.); (H.Z.)
| |
Collapse
|
2
|
Salimova EV, Parfenova LV, Ishmetova DV, Zainullina LF, Vakhitova YV. Synthesis of fusidane triterpenoid Mannich bases as potential antibacterial and antitumor agents. Nat Prod Res 2023; 37:3956-3963. [PMID: 36591608 DOI: 10.1080/14786419.2022.2163483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
Mannich bases (8 examples) were synthesized via aminomethylation of fusidane propargyl esters. In vitro antimicrobial screening against key ESKAPE pathogens showed that the fusidic acid based Mannich products exhibit a high antimicrobial effect against Gram-positive bacteria Staphylococcus aureus and the fungus Cryptococcus neoformans. Moreover, the cytotoxic effect of fusidic acid and its analogs, which showed high antibacterial activity, was determined by MTT assay on cancer HepG2, HCT-116, SH-SY5Y, MCF-7, A549 and conditionally normal cells HEK293. A remarkable cytotoxic activity of fusidic acid propargyl ester and its aminomethylene derivatives against cancer and nontumoral HEK293 cells with IC50 values within 4.2-25 µM was found.
Collapse
Affiliation(s)
- Elena V Salimova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
| | - Lyudmila V Parfenova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
| | - Diana V Ishmetova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
| | - Liana F Zainullina
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
| | - Yulia V Vakhitova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
| |
Collapse
|
3
|
Tu B, Cao N, Zhang B, Zheng W, Li J, Tang X, Su K, Li J, Zhang Z, Yan Z, Li D, Zheng X, Zhang K, Hong WD, Wu P. Synthesis and Biological Evaluation of Novel Fusidic Acid Derivatives as Two-in-One Agent with Potent Antibacterial and Anti-Inflammatory Activity. Antibiotics (Basel) 2022; 11:antibiotics11081026. [PMID: 36009895 PMCID: PMC9405029 DOI: 10.3390/antibiotics11081026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Fusidic acid (FA), a narrow-spectrum antibiotics, is highly sensitive to various Gram-positive cocci associated with skin infections. It has outstanding antibacterial effects against certain Gram-positive bacteria whilst no cross-resistance with other antibiotics. Two series of FA derivatives were synthesized and their antibacterial activities were tested. A new aromatic side-chain analog, FA-15 exhibited good antibacterial activity with MIC values in the range of 0.781–1.563 µM against three strains of Staphylococcus spp. Furthermore, through the assessment by the kinetic assay, similar characteristics of bacteriostasis by FA and its aromatic derivatives were observed. In addition, anti-inflammatory activities of FA and its aromatic derivatives were evaluated by using a 12-O-tetradecanoylphorbol-13-acetate (TPA) induced mouse ear edema model. The results also indicated that FA and its aromatic derivatives effectively reduced TPA-induced ear edema in a dose-dependent manner. Following, multiform computerized simulation, including homology modeling, molecular docking, molecular dynamic simulation and QSAR was conducted to clarify the mechanism and regularity of activities. Overall, the present work gave vital clues about structural modifications and has profound significance in deeply scouting for bioactive potentials of FA and its derivatives.
Collapse
Affiliation(s)
- Borong Tu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Nana Cao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Bingjie Zhang
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
| | - Wende Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jiahao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xiaowen Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Kaize Su
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jinxuan Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhenping Yan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
- Correspondence: (K.Z.); (W.D.H.); (P.W.); Tel.: +86-13822330019 (K.Z.); +44-7863354263 (W.D.H.); +86-18825179347 (P.W.)
| | - Weiqian David Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
- Correspondence: (K.Z.); (W.D.H.); (P.W.); Tel.: +86-13822330019 (K.Z.); +44-7863354263 (W.D.H.); +86-18825179347 (P.W.)
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
- Correspondence: (K.Z.); (W.D.H.); (P.W.); Tel.: +86-13822330019 (K.Z.); +44-7863354263 (W.D.H.); +86-18825179347 (P.W.)
| |
Collapse
|
4
|
TIAN C, WANG K, ZHANG X, LI G, LOU HX. Old fusidane-type antibiotics for new challenges: Chemistry and biology. Chin J Nat Med 2022; 20:81-101. [DOI: 10.1016/s1875-5364(21)60114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 12/24/2022]
|
5
|
Long J, Ji W, Zhang D, Zhu Y, Bi Y. Bioactivities and Structure-Activity Relationships of Fusidic Acid Derivatives: A Review. Front Pharmacol 2021; 12:759220. [PMID: 34721042 PMCID: PMC8554340 DOI: 10.3389/fphar.2021.759220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
Fusidic acid (FA) is a natural tetracyclic triterpene isolated from fungi, which is clinically used for systemic and local staphylococcal infections, including methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci infections. FA and its derivatives have been shown to possess a wide range of pharmacological activities, including antibacterial, antimalarial, antituberculosis, anticancer, tumor multidrug resistance reversal, anti-inflammation, antifungal, and antiviral activity in vivo and in vitro. The semisynthesis, structural modification and biological activities of FA derivatives have been extensively studied in recent years. This review summarized the biological activities and structure-activity relationship (SAR) of FA in the last two decades. This summary can prove useful information for drug exploration of FA derivatives.
Collapse
Affiliation(s)
- Junjun Long
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Wentao Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Doudou Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yifei Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
6
|
Singh V, Dziwornu GA, Mabhula A, Chibale K. Rv0684/ fusA1, an Essential Gene, Is the Target of Fusidic Acid and Its Derivatives in Mycobacterium tuberculosis. ACS Infect Dis 2021; 7:2437-2444. [PMID: 34196521 DOI: 10.1021/acsinfecdis.1c00195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a major global health concern given the increase in multiple forms of drug-resistant TB. This underscores the importance of a continuous pipeline of new anti-TB agents. Drug repurposing has shown promise in expanding the therapeutic options for TB chemotherapy. Fusidic acid (FA), a natural product-derived antibiotic, is one such candidate for repurposing. The present study aimed to understand the mechanism of action of FA and its selected analogs in M. tuberculosis. By using chemical biology and genetics, we identified elongation factor G as the target of FA in M. tuberculosis. We showed essentiality of its encoding gene fusA1 in M. tuberculosis by demonstrating that the transcriptional silencing of fusA1 is bactericidal in vitro and in macrophages. Thus, this work validated a novel drug target FusA1 in M. tuberculosis.
Collapse
Affiliation(s)
- Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Godwin Akpeko Dziwornu
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Amanda Mabhula
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
7
|
Garcia Chavez M, Garcia A, Lee HY, Lau GW, Parker EN, Komnick KE, Hergenrother PJ. Synthesis of Fusidic Acid Derivatives Yields a Potent Antibiotic with an Improved Resistance Profile. ACS Infect Dis 2021; 7:493-505. [PMID: 33522241 DOI: 10.1021/acsinfecdis.0c00869] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fusidic acid (FA) is a potent steroidal antibiotic that has been used in Europe for more than 60 years to treat a variety of infections caused by Gram-positive pathogens. Despite its clinical success, FA requires significantly elevated dosing (3 g on the first day, 1.2 g on subsequent days) to minimize resistance, as FA displays a high resistance frequency, and a large shift in minimum inhibitory concentration is observed for resistant bacteria. Despite efforts to improve on these aspects, all previously constructed derivatives of FA have worse antibacterial activity against Gram-positive bacteria than the parent natural product. Here, we report the creation of a novel FA analogue that has equivalent potency against clinical isolates of Staphylococcus aureus (S. aureus) and Enterococcus faecium (E. faecium) as well as an improved resistance profile in vitro when compared to FA. Importantly, this new compound displays efficacy against an FA-resistant strain of S. aureus in a soft-tissue murine infection model. This work delineates the structural features of FA necessary for potent antibiotic activity and demonstrates that the resistance profile can be improved for this scaffold and target.
Collapse
Affiliation(s)
- Martin Garcia Chavez
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Alfredo Garcia
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hyang Yeon Lee
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Gee W. Lau
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana−Champaign, 2001 South Lincoln Avenue, Urbana, Illinois 61801, United States
| | - Erica N. Parker
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kailey E. Komnick
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Singh K, Kaur G, Shanika PS, Dziwornu GA, Okombo J, Chibale K. Structure-activity relationship analyses of fusidic acid derivatives highlight crucial role of the C-21 carboxylic acid moiety to its anti-mycobacterial activity. Bioorg Med Chem 2020; 28:115530. [PMID: 32362386 DOI: 10.1016/j.bmc.2020.115530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 12/01/2022]
Abstract
Fusidic acid (FA) is a potent congener of the fusidane triterpenoid class of antibiotics. Structure-activity relationship (SAR) studies suggest the chemical structure of FA is optimal for its antibacterial activity. SAR studies from our group within the context of a drug repositioning approach in tuberculosis (TB) suggest that, as with its antibacterial activity, the C-21 carboxylic acid group is indispensable for its anti-mycobacterial activity. Further studies have led to the identification of 16-deacetoxy-16β-ethoxyfusidic acid (58), an analog which exhibited comparable activity to FA with an in vitro MIC99 value of 0.8 µM. Preliminary SAR studies around the FA scaffold suggested that the hydrophobic side chain at C-20, like the C-11 OH group, was required for activity. The C-3 OH group, however, can be functionalized to obtain more potent compounds.
Collapse
Affiliation(s)
- Kawaljit Singh
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Gurminder Kaur
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | | | | | - John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
9
|
Sharma M, Prasher P. An epigrammatic status of the ' azole'-based antimalarial drugs. RSC Med Chem 2020; 11:184-211. [PMID: 33479627 PMCID: PMC7536834 DOI: 10.1039/c9md00479c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022] Open
Abstract
The development of multidrug resistance in the malarial parasite has sabotaged majority of the eradication efforts by restraining the inhibition profile of first line as well as second line antimalarial drugs, thus necessitating the development of novel pharmaceutics constructed on appropriate scaffolds with superior potency against the drug-resistant and drug-susceptible Plasmodium parasite. Over the past decades, the infectious malarial parasite has developed resistance against most of the contemporary therapeutics, thus necessitating the rational development of novel approaches principally focused on MDR malaria. This review presents an epigrammatic collation of the epidemiology and the contemporary antimalarial therapeutics based on the 'azole' motif.
Collapse
Affiliation(s)
- Mousmee Sharma
- Department of Chemistry , Uttaranchal University , Dehradun 248007 , India
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| | - Parteek Prasher
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India . ;
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| |
Collapse
|
10
|
Rani A, Legac J, Rosenthal PJ, Kumar V. Substituted 1,3-dioxoisoindoline-4-aminoquinolines coupled via amide linkers: Synthesis, antiplasmodial and cytotoxic evaluation. Bioorg Chem 2019; 88:102912. [PMID: 30991190 DOI: 10.1016/j.bioorg.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/27/2022]
Abstract
Synthesis of C-5-substituted 1,3-dioxoisoindoline-4-aminoquinolines having amide group as a spacer was developed with an intent to evaluate their antiplasmodial activities. The synthesized dioxoisoindoline-aminoquinolines tethered with β-alanine as a spacer and secondary amine as substituent displayed good anti-plasmodial activities. Compound 7j, with an optimum combination of β-alanine and an ethyl chain length as linker along with diethylamine as the secondary amine counterpart at dioxoisoindoline proved to be most potent and non-cytotoxic with IC50 of 0.097 µM against W2 strain of P. falciparum and a selective index of >2000.
Collapse
Affiliation(s)
- Anu Rani
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
11
|
Kaur G, Pavadai E, Wittlin S, Chibale K. 3D-QSAR Modeling and Synthesis of New Fusidic Acid Derivatives as Antiplasmodial Agents. J Chem Inf Model 2018; 58:1553-1560. [DOI: 10.1021/acs.jcim.8b00105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gurminder Kaur
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Elumalai Pavadai
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, 4002 Basel, Switzerland
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
12
|
Pavadai E, Kaur G, Wittlin S, Chibale K. Identification of steroid-like natural products as antiplasmodial agents by 2D and 3D similarity-based virtual screening. MEDCHEMCOMM 2017; 8:1152-1157. [PMID: 30108825 DOI: 10.1039/c7md00063d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/17/2017] [Indexed: 11/21/2022]
Abstract
The emergence of drug resistance in Plasmodium falciparum to available antimalarial drugs has challenged current antimalarial treatments. New antimalarials, particularly those with novel mechanisms of action and no cross resistance to current drugs, are therefore urgently needed. To identify new growth inhibitors of Plasmodium falciparum, 2D and 3D similarity-based virtual screening methods were employed in parallel with an in-house database of steroid-type natural products using fusidic acid as a search query. The resulting hit compounds were further filtered based on the predicted partition coefficient, log P. The virtual screening strategy resulted in the identification of nine new compounds that inhibited parasite growth with IC50 values of <20 μM. Four compounds exhibited IC50 values in the range of 1.39-3.45 μM and three of which showed a promising selectivity index. Further, the predicted ADME properties of the four most active compounds were found to be comparable to fusidic acid. These compounds can be further explored using structural modifications in the identification and development of more potent parasite growth inhibitors with improved selectivity.
Collapse
Affiliation(s)
- Elumalai Pavadai
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; ; ; Tel: +1 (305) 348 6661 ; Tel: +27 21 650 2553
| | - Gurminder Kaur
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; ; ; Tel: +1 (305) 348 6661 ; Tel: +27 21 650 2553
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , 4051 Basel , Switzerland.,University of Basel , 4002 Basel , Switzerland
| | - Kelly Chibale
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; ; ; Tel: +1 (305) 348 6661 ; Tel: +27 21 650 2553.,Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Rondebosch 7701 , South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit , University of Cape Town , Rondebosch 7701 , South Africa
| |
Collapse
|
13
|
Espinoza-Moraga M, Singh K, Njoroge M, Kaur G, Okombo J, De Kock C, Smith PJ, Wittlin S, Chibale K. Synthesis and biological characterisation of ester and amide derivatives of fusidic acid as antiplasmodial agents. Bioorg Med Chem Lett 2017; 27:658-661. [DOI: 10.1016/j.bmcl.2016.11.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 11/16/2022]
|