1
|
Jing Z, Zhou Y, Zhang W, Yamaguchi T, Yoshida K, Wang G, Han L. Structures of 18-crown-6/Cs+ complexes in aqueous solutions by wide angle X-ray scattering and density functional theory. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Chowdhury UD, Bhargava BL. Helix-coil transition and conformational deformity in A β42-monomer: a case study using the Zn 2+ cation. J Biomol Struct Dyn 2021; 40:8949-8960. [PMID: 34018465 DOI: 10.1080/07391102.2021.1927190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The metal ions (like Fe2+, Zn2+, Cu2+) are known to influence the amyloid beta (Aβ) aggregation. In this study, we have examined the conformational and dynamical changes during the coordination of Aβ-monomer with the Zn2+ ion using all-atom molecular dynamics (MD) simulations using explicit solvent models. We have probed the unfolding of the full-length Aβ42 monomer both inclusive and exclusive of the Zn2+ cation, with 1:1 ratio of the peptide and the Zn2+ cation. The inclusion of the Zn2+ cation shows differential intra-peptide interactions which has been probed using various analyses. The Helix - Coil transition of the wild type Aβ42 monomer is studied using the steered molecular dynamics simulations by taking the end-to-end C-α distance across the peptide. This gives an idea of the unequal intra - peptide and peptide - water interactions being found across the length of the Aβ monomer. The transition of an α-helix dominated wild-type (WT) Aβ structure to the unfolded coil structure gives significant evidence of the intra-peptide hydrogen bonding shifts in the presence of the Zn2+ cation. This accounts for the structural and the dynamical variations that take place in the Aβ monomer in the presence of the Zn2+ cation to mimic the conditions/environment at the onset of fibrillation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Unmesh D Chowdhury
- School of Chemical Sciences, National Institute of Science Education and Research - Bhubaneswar, HBNI, Khurda, Odisha, India
| | - B L Bhargava
- School of Chemical Sciences, National Institute of Science Education and Research - Bhubaneswar, HBNI, Khurda, Odisha, India
| |
Collapse
|
3
|
Liu Z, Ren X, Tan R, Chai Z, Wang D. Key Factors Determining Efficiency of Liquid-Liquid Extraction: Implications from Molecular Dynamics Simulations of Biphasic Behaviors of CyMe 4-BTPhen and Its Am(III) Complexes. J Phys Chem B 2020; 124:1751-1766. [PMID: 32039594 DOI: 10.1021/acs.jpcb.9b08447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CyMe4-BTPhen (2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline, denoted as L) has been considered as a promising extractant in lanthanide(III)/actinide(III) separation. Vast endeavors in its application put forward a compelling need on the understanding of the underlying mechanism in the liquid-liquid extraction. To address the issue of its dynamics in biphasic systems, we carried out molecular dynamics (MD) simulations of L and its complexes with a heavy f-block metal ion, americium(III) (Am3+) in "oil"/water binary solvents. Two types of organic phases have been considered, differing in the presence of octanol in the bulk n-dodecane or not, and the distribution of the solutes and their interfacial behaviors have been investigated. Two of the key factors that determine the efficiency of a liquid-liquid extraction protocol were delineated and discussed, that is, the appropriate ligand to enhance the lipophilicity of AmL complexes and appropriate way to form ion pairs to minimize the attraction between the complexes and aqueous phase. The simulations showed that the charge states of both ligand and AmL complexes were strongly correlated with their phase behavior, and the migration of neutral species was driven by van der Waals interactions while that of charged species by electrostatic interactions, indicating stronger lipophilicity of the former than the latter. The presence of octanol facilitated the migration of the ligand from the interface to the organic phase via hydrogen bond between its polar head and the ligand or the AmL complexes and constituted a polar core in the organic phase. This work bridged the widely used liquid-liquid extraction technique in chemistry to a fundamental chemical concept, that is, minimization of hydrophilicity and maximization of lipophilicity to facilitate phase transfer from the aqueous phase to the organic phase, and is expected to improve the understanding of dynamics of ligands and their complexes with metal ions and to contribute to the development of efficient protocols for phase transfer of target species.
Collapse
Affiliation(s)
- Ziyi Liu
- CAS Key Laboratory of Nuclear Radiation and Nuclear Techniques, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Ren
- CAS Key Laboratory of Nuclear Radiation and Nuclear Techniques, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongri Tan
- CAS Key Laboratory of Nuclear Radiation and Nuclear Techniques, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,College of Communication and Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Zhifang Chai
- CAS Key Laboratory of Nuclear Radiation and Nuclear Techniques, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Radiation Medicine and Protection, and School of Radiation Medicine and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Dongqi Wang
- CAS Key Laboratory of Nuclear Radiation and Nuclear Techniques, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Fatehi M, Mohebbi A, Moradi A. Molecular dynamics insight into the behaviour of 5-nonylsalicylaldoxime and its complex with Cu(II) in different diluent/water systems. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Benay G, Wipff G. The effect of solvent heterogeneity on the solvation and complexation of alkali cations by 18-crown-6: a simulation study in the 90 : 10 chloroform/methanol mixture. NEW J CHEM 2016. [DOI: 10.1039/c5nj03527a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although chloroform is in excess over methanol in the mixture, the predicted ion binding affinities and selectivities are more “methanol-like” than “chloroform-like”.
Collapse
Affiliation(s)
- Gael Benay
- Laboratoire MSM
- UMR 7140
- Institut de Chimie
- 67000 Strasbourg
- France
| | - Georges Wipff
- Laboratoire MSM
- UMR 7140
- Institut de Chimie
- 67000 Strasbourg
- France
| |
Collapse
|