1
|
Qiu X, Tang H, Zhang L, Wang R. Directional Self-Assembly of Programmable Atom-like Nanoparticles into Colloidal Molecules. J Phys Chem Lett 2025; 16:3141-3148. [PMID: 40105292 DOI: 10.1021/acs.jpclett.5c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Colloidal molecules, novel nanoparticle clusters with molecular-like structures, can enhance material performance and broaden applications in nanotechnology and materials science. However, constructing them with a precise, controllable architecture remains challenging. Inspired by the concepts of chemical reaction, we theoretically design a novel type of nanoparticles bifunctionalized by DNA strands and polymer chains and propose a stepwise strategy to hierarchically program the assembly of bifunctionalized nanoparticles into well-defined colloidal molecules by virtue of coarse-grained molecular dynamics simulations. This method leverages the synergistic effects of polymers and DNA to create programmable atom-like nanoparticles with various valence domains. By carefully designing strands, these nanoparticles are programmed to coassemble into various colloidal molecules with distinct symmetries and coordination numbers, which can be finely tuned by the molecular design of nanoparticles as well as the composition design of the coassembly system. Our strategy provides a novel protocol for the controlled coassembly of nanoparticles into customized colloidal molecules, expanding nanomaterial manufacturing techniques.
Collapse
Affiliation(s)
- Xiandeng Qiu
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Engineering Research Center of Photoresist Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Tang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Engineering Research Center of Photoresist Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rong Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Engineering Research Center of Photoresist Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Sun YW, Li ZW. Nanohelix Arrays with Giant Circular Dichroism through Patch-Enthalpy-Driven Self-Confined Self-Assembly of Janus Nanoparticles. NANO LETTERS 2025; 25:4540-4548. [PMID: 40062726 DOI: 10.1021/acs.nanolett.5c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Plasmonic nanohelix arrays, exhibiting strong circular dichroism, are among the most promising optical chiral metamaterials. However, achieving chiral plasmonic effects in the visible range remains challenging with current manufacturing techniques, as it requires structures small enough to resonate at visible wavelengths. Herein, we propose a novel strategy for constructing nanohelix arrays through patch-enthalpy-driven self-confined self-assembly of Janus nanoparticles. The hexagonal columnar structures, self-assembled from Janus nanoparticles, create a cylindrical self-confined environment within each column, where patch-enthalpy drives the particles to form helical structures. Numerical simulations reveal that patch-enthalpy induces the sequential formation of helical structures within each column, from multiple helices to double helix and finally to single helix. Additionally, optical property calculations demonstrate that these nanohelix arrays exhibit giant circular dichroism and high g-factors at visible frequencies. Our proposed construction strategy offers a promising route for developing optical chiral metamaterials through patch-enthalpy-driven self-confined self-assembly of Janus nanoparticles.
Collapse
Affiliation(s)
- Yu-Wei Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Wei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
De Filippo CA, Del Galdo S, Bianchi E, De Michele C, Capone B. Dilute suspensions of Janus rods: the role of bond and shape anisotropy. NANOSCALE 2024; 16:18545-18552. [PMID: 39283717 DOI: 10.1039/d4nr02397h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Nanometer-sized clusters are often targeted due to their potential applications as nanoreactors or storage/delivery devices. One route to assemble and stabilize finite structures consists of imparting directional bonding patterns between the nanoparticles. When only a portion of the particle surface is able to form an inter-particle bond, finite-size aggregates such as micelles and vesicles may form. Building on this approach, we combine particle shape anisotropy with the directionality of the bonding patterns and investigate the combined effect of particle elongation and surface patchiness on the low density assembly scenario. To this aim, we study the assembly of tip-functionalised Janus hard spherocylinders by means of Monte Carlo simulations. By exploring the effects of changing the interaction strength and range at different packing fractions, we highlight the role played by shape and bond anisotropy on the emerging aggregates (micelles, vesicles, elongated micelles, and lamellae). We observe that shape anisotropy plays a crucial role in suppressing phases that are typical to spherical Janus nanoparticles and that a careful tuning of the interaction parameters allows promoting the formation of spherical micelles. These finite-size spherical clusters composed of elongated particles might offer more interstitials and larger surface areas than those offered by micelles of spherical or almost-spherical units, thus enhancing their storage and catalytic properties.
Collapse
Affiliation(s)
| | - Sara Del Galdo
- Science Department, University of Roma Tre, Via della Vasca Navale 84, 00146, Rome, Italy.
| | - Emanuela Bianchi
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Cristiano De Michele
- Physics Department, University of Roma "Sapienza", Piazzale Aldo Moro 2, 00186, Rome, Italy
| | - Barbara Capone
- Science Department, University of Roma Tre, Via della Vasca Navale 84, 00146, Rome, Italy.
| |
Collapse
|
4
|
Safaei S, Todd C, Yarndley J, Hendy S, Willmott GR. Asymmetric assembly of Lennard-Jones Janus dimers. Phys Rev E 2021; 104:024602. [PMID: 34525533 DOI: 10.1103/physreve.104.024602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/22/2021] [Indexed: 11/07/2022]
Abstract
Self-assembly of Janus (or "patchy") particles is dependent on the precise interaction between neighboring particles. Here, the orientations of two amphiphilic Janus spheres within a dimer in an explicit fluid are studied with high geometric resolution. Molecular dynamics simulations and semianalytical energy calculations are used with hard- and soft-sphere Lennard-Jones potentials, and temperature and hydrophobicity are varied. The most probable center-center-pole angles are in the range of 40^{∘}-55^{∘} with pole-to-pole alignment not observed due to orientational entropy. Angles near 90^{∘} are energetically unfavored due to solvent exclusion, and the relative azimuthal angle between the spheres is affected by solvent ordering. Relatively large polar angles become more favored as the hydrophobic surface area (i.e., Janus balance) is increased.
Collapse
Affiliation(s)
- Sina Safaei
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand.,Department of Physics, University of Auckland, Auckland 1010, New Zealand
| | - Caleb Todd
- Department of Physics, University of Auckland, Auckland 1010, New Zealand
| | - Jack Yarndley
- Department of Physics, University of Auckland, Auckland 1010, New Zealand
| | - Shaun Hendy
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand.,Department of Physics, University of Auckland, Auckland 1010, New Zealand.,Te Pūnaha Matatini, University of Auckland, Auckland 1010, New Zealand
| | - Geoff R Willmott
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand.,Department of Physics, University of Auckland, Auckland 1010, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Sun YW, Chen ZQ, Zhu YL, Li ZW, Lu ZY, Sun ZY. Intercluster Exchange-Stabilized Novel Complex Colloidal χ c Phase. J Phys Chem Lett 2021; 12:8872-8881. [PMID: 34498873 DOI: 10.1021/acs.jpclett.1c01916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designing complex cluster crystals with a specific function using simple colloidal building blocks remains a challenge in materials science. Herein, we propose a conceptually new design strategy for constructing complex cluster crystals via hierarchical self-assembly of simple soft Janus colloids. A novel and previously unreported colloidal cluster-χ (χc) phase, which resembles the essential structural features of α-manganese but at a larger length scale, is obtained through molecular dynamics simulations. The formation of the χc phase undergoes a remarkable two-step self-assembly process, that is, the self-assembly of clusters with specific size dispersity from Janus colloids, followed by the highly ordered organization of these clusters. More importantly, the dynamic exchange of particles between these clusters plays a critical role in stabilizing the χc phase. Such a conceptual design framework based on intercluster exchange has the potential to effectively construct novel complex cluster crystals by hierarchical self-assembly of colloidal building blocks.
Collapse
Affiliation(s)
- Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Qin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Ghosh PK, Marchesoni F, Li Y, Nori F. Active particle diffusion in convection roll arrays. Phys Chem Chem Phys 2021; 23:11944-11953. [PMID: 33999060 DOI: 10.1039/d1cp01088c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Undesired advection effects are unavoidable in most nano-technological applications involving active matter. However, it is conceivable to govern the transport of active particles at the small scales by suitably tuning the relevant advection and self-propulsion parameters. To this purpose, we numerically investigated the Brownian motion of active Janus particles in a linear array of planar counter-rotating convection rolls at high Péclet numbers. Similarly to passive particles, active microswimmers exhibit advection enhanced diffusion, but only for self-propulsion speeds up to a critical value. The diffusion of faster Janus particles is governed by advection along the array's edges, whereby distinct diffusion regimes are observed and characterized. Contrary to passive particles, the relevant spatial distributions of active Janus particles are inhomogeneous. These peculiar properties of active matter are related to the combined action of noise and self-propulsion in a confined geometry and hold regardless of the actual flow boundary conditions.
Collapse
Affiliation(s)
- Pulak Kumar Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Fabio Marchesoni
- Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China. and Dipartimento di Fisica, Università di Camerino, I-62032 Camerino, Italy
| | - Yunyun Li
- Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China.
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
7
|
Malhotra I, Babu SB. Phase diagram of two-patch colloids with competing anisotropic and isotropic interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:355101. [PMID: 32325451 DOI: 10.1088/1361-648x/ab8c8e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Patchy particles are considered to be a good model for protein aggregation. We propose a novel method to generate different structures of glucose isomerase protein such as chains, crystals and bundles by utilising aggregation of two-patch colloidal particles in presence of competing isotropic and anisotropic potential. We calculate the equilibrium phase diagram of two-patch colloidal particles and demonstrates the coexistence of different phases like disordered clusters, chains, crystals and bundles depending on the relative strength of isotropic and anisotropic potential. We also show that the formation of network of bundles is metastable against the formation of thermodynamically favored finite sized bundles along with thermodynamically stable crystals. These bundles appear to be helical in structure similar to that observed in sickle cell hemoglobin. The simulation results show that the method can characterize phase behaviour of glucose isomerase protein, which provides a novel tool to unveil self-assembly mechanism of protein under different conditions.
Collapse
Affiliation(s)
- Isha Malhotra
- Out of Equilibrium Group, Department of physics, Indian Institute of Technology, Delhi-110016, India
| | - Sujin B Babu
- Out of Equilibrium Group, Department of physics, Indian Institute of Technology, Delhi-110016, India
| |
Collapse
|
8
|
Debnath D, Ghosh PK, Misko VR, Li Y, Marchesoni F, Nori F. Enhanced motility in a binary mixture of active nano/microswimmers. NANOSCALE 2020; 12:9717-9726. [PMID: 32323694 DOI: 10.1039/d0nr01765e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is often desirable to enhance the motility of active nano- or microscale swimmers such as, e.g., self-propelled Janus particles as agents of chemical reactions or weak sperm cells for better chances of successful fertilization. Here we tackle this problem based on the idea that motility can be transferred from a more active guest species to a less active host species. We performed numerical simulations of motility transfer in two typical cases, namely for interacting particles with a weak inertia effect, by analyzing their velocity distributions, and for interacting overdamped particles, by studying their effusion rate. In both cases, we detected motility transfer with a motility enhancement of the host species of up to a factor of four. This technique of motility enhancement can find applications in chemistry, biology and medicine.
Collapse
Affiliation(s)
- Debajyoti Debnath
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, India.
| | - Pulak Kumar Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, India.
| | - Vyacheslav R Misko
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan and μFlow group, Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Yunyun Li
- Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Fabio Marchesoni
- Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China and Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia, Italy
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
9
|
Li ZW, Sun YW, Wang YH, Zhu YL, Lu ZY, Sun ZY. Kinetics-controlled design principles for two-dimensional open lattices using atom-mimicking patchy particles. NANOSCALE 2020; 12:4544-4551. [PMID: 32040105 DOI: 10.1039/c9nr09656f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The design and discovery of new two-dimensional materials with desired structures and properties are always one of the most fundamental goals in materials science. Here we present an atom-mimicking design concept to achieve direct self-assembly of two-dimensional low-coordinated open lattices using three-dimensional patchy particle systems. Besides honeycomb lattices, a new type of two-dimensional square-octagon lattice is obtained through rational design of the patch configuration of soft three-patch particles. However, unexpectedly the building blocks with thermodynamically favoured patch configuration cannot form square-octagon lattices in our simulations. We further reveal the kinetic mechanisms controlling the formation of the honeycomb and square-octagon lattices. The results indicate that the kinetically favoured intermediates play a critical role in determining the structure of obtained open lattices. This kinetics-controlled design principle provides a particularly effective and extendable framework to construct other novel open lattice structures.
Collapse
Affiliation(s)
- Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Yan-Hui Wang
- University of Science and Technology of China, Hefei, 230026, China and Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China and Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| |
Collapse
|
10
|
Kobayashi Y, Arai N, Nikoubashman A. Structure and dynamics of amphiphilic Janus spheres and spherocylinders under shear. SOFT MATTER 2020; 16:476-486. [PMID: 31803898 DOI: 10.1039/c9sm01937e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We study the structure formation and flow properties of colloidal dispersions comprised of Janus spheres, Janus spherocylinders, and their mixtures, using hybrid molecular dynamics simulations that take into account hydrodynamic interactions. We systematically vary the Janus balance and the shape anisotropy of the particles, and explore a range of colloid volume fractions in the liquid regime of the phase diagram. At rest, Janus spheres with small hydrophobic patches form spherical micelles for all investigated colloid concentrations. In contrast, Janus spheres with an entirely hydrophobic hemisphere aggregate to larger worm-like micelles and network-like structures. Janus spherocylinders exhibit a similar self-assembly behavior. At small and intermediate shear, we observe deformation and rearrangement of the micelles, accompanied by a Newtonian-like rheology with slightly higher shear viscosity compared to homoparticle dispersions at the same concentration. As the shear rate is increased further, the micelles eventually break up into small dimers and free particles, causing a distinct shear-thinning of the dispersions. The network-like structures exhibit a similar flow behavior at high shear rates, but for weak shear we find an almost threefold increase of the shear viscosity and a distinct shear-thinning behavior due to the fracturing of the intertwined networks. In general, we identify a strong correlation between the size of the aggregates and the rheology of the dispersions, allowing for the determination of dynamic properties solely based on structural information.
Collapse
Affiliation(s)
- Yusei Kobayashi
- Department of Mechanical Engineering, Keio University, Kohoku-ku, Yokohama, Japan.
| | | | | |
Collapse
|
11
|
Feng ZQ, Yan K, Li J, Xu X, Yuan T, Wang T, Zheng J. Magnetic Janus particles as a multifunctional drug delivery system for paclitaxel in efficient cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:110001. [DOI: 10.1016/j.msec.2019.110001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 06/15/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
|
12
|
Malhotra I, Babu SB. Mobile obstacles accelerate and inhibit the bundle formation in two-patch colloidal particle. J Chem Phys 2019; 151:084901. [PMID: 31470715 DOI: 10.1063/1.5110777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aggregation of protein into bundles is responsible for many neurodegenerative diseases. In this work, we show how two-patch colloidal particles self-assemble into chains and a sudden transition to bundles takes place by tuning the patch size and solvent condition. We study the kinetics of formation of chains, bundles, and networklike structures using patchy Brownian cluster dynamics. We also analyze the ways to inhibit and accelerate the formation of these bundles. We show that in the presence of inert immobile obstacles, the kinetics of formation of bundles slows down. However, in the presence of mobile aggregating particles, which exhibit interspecies hard sphere repulsion and intraspecies attraction, the kinetics of bundle formation accelerates slightly. We also show that if we introduce mobile obstacles, which exhibit interspecies attraction and intraspecies hard sphere repulsion, the kinetics of formation of bundles is inhibited. This is similar to the inhibitory effect of peptide P4 on the formation of insulin fibers. We are providing a model of mobile obstacles undergoing directional interactions to inhibit the formation of bundles.
Collapse
Affiliation(s)
- I Malhotra
- Out of Equilibrium Group, Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - S B Babu
- Out of Equilibrium Group, Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
13
|
Liu SJ, Li JT, Gu F, Wang HJ. Crystallization, vitrification, and gelation of patchy colloidal particles. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1810231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Shu-jing Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
- College of Science, Agricultural University of Hebei, Baoding 071001, China
| | - Jiang-tao Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Fang Gu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Hai-jun Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
- Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| |
Collapse
|
14
|
Zou QZ, Li ZW, Zhu YL, Sun ZY. Coupling and decoupling between translational and rotational dynamics in supercooled monodisperse soft Janus particles. SOFT MATTER 2019; 15:3343-3352. [PMID: 30951070 DOI: 10.1039/c9sm00165d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We perform dynamics simulations to investigate the translational and rotational glassy dynamics in a glass-forming liquid of monodisperse soft Janus particles. We find that, with decreasing temperature, the mean-square angular displacement shows no clear plateau in the caging region, in contrast with the apparent caging behavior of translational motion. By defining a reorientational mean-square angular displacement, the caging behavior of rotational motion can be recognized. On approaching the glass transition (decreasing temperature), the coupling between translational and rotational relaxation increases, while the coupling between translational and rotational diffusion decreases, whereas the coupling between translational and reorientational diffusion increases. The strong decoupling between translational and rotational diffusion is due to the suppressed translational mobility but promoted rotational mobility of soft Janus particles. We think that the low-T SE and SED decoupling is mainly attributed to hopping motion of soft Janus particles, whereas the high-T SE and SED decoupling is mainly attributed to collective cage motion of soft Janus particles. Our results demonstrate that interaction anisotropy has a critical effect on the translational and rotational dynamics of soft Janus particles.
Collapse
Affiliation(s)
- Qing-Zhi Zou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | | | | | |
Collapse
|
15
|
Zhang Q, Qiang Y, Duan C, Li W. Single Helix Self-Assembled by Frustrated ABC 2 Branched Terpolymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yicheng Qiang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Chao Duan
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Yang T, Xue H, Cao R, Li W. Formation of homochiral helical nanostructures in diblock copolymers under the confinement of nanopores. Phys Chem Chem Phys 2019; 21:7067-7074. [DOI: 10.1039/c9cp00227h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The control of the homochirality of helical structures formed in achiral systems is of great interest as it is helpful for understanding the origin of homochirality in life.
Collapse
Affiliation(s)
- Tao Yang
- Ningxia Key Laboratory of Information Sensing & Intelligent Desert
- School of Physics and Electronic-Electrical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Haiyan Xue
- Ningxia Key Laboratory of Information Sensing & Intelligent Desert
- School of Physics and Electronic-Electrical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Ruifang Cao
- Xinhua College of Ningxia University
- Yinchuan 750021
- China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
17
|
Li ZW, Zhu YL, Lu ZY, Sun ZY. General patchy ellipsoidal particle model for the aggregation behaviors of shape- and/or surface-anisotropic building blocks. SOFT MATTER 2018; 14:7625-7633. [PMID: 30152819 DOI: 10.1039/c8sm01631c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a general patchy ellipsoidal particle model suitable for conducting dynamics simulations of the aggregation behaviors of various shape- and/or surface-anisotropic colloids, especially patchy ellipsoids with continuously variable shape and tunable patchiness. To achieve higher computational efficiency in dynamics simulations, we employ a multi-GPU acceleration technique based on a domain decomposition algorithm. The validation and performance evaluation of this GPU-assisted model are performed by simulating several typical benchmark systems of non-patchy and patchy ellipsoids. Given the generality and efficiency of our GPU-assisted patchy ellipsoidal particle model, it will provide a highly feasible dynamics simulation framework to investigate the aggregation behaviors of anisotropic soft matter systems comprised of shape- and/or surface-anisotropic building blocks.
Collapse
Affiliation(s)
- Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | | | | | |
Collapse
|
18
|
Prestipino S, Munaò G, Costa D, Caccamo C. Self-assembly in a model colloidal mixture of dimers and spherical particles. J Chem Phys 2018; 146:084902. [PMID: 28249437 DOI: 10.1063/1.4976704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigate the structure of a dilute mixture of amphiphilic dimers and spherical particles, a model relevant to the problem of encapsulating globular "guest" molecules in a dispersion. Dimers and spheres are taken to be hard particles, with an additional attraction between spheres and the smaller monomers in a dimer. Using the Monte Carlo simulation, we document the low-temperature formation of aggregates of guests (clusters) held together by dimers, whose typical size and shape depend on the guest concentration χ. For low χ (less than 10%), most guests are isolated and coated with a layer of dimers. As χ progressively increases, clusters grow in size becoming more and more elongated and polydisperse; after reaching a shallow maximum for χ≈50%, the size of clusters again reduces upon increasing χ further. In one case only (χ=50% and moderately low temperature) the mixture relaxed to a fluid of lamellae, suggesting that in this case clusters are metastable with respect to crystal-vapor separation. On heating, clusters shrink until eventually the system becomes homogeneous on all scales. On the other hand, as the mixture is made denser and denser at low temperature, clusters get increasingly larger until a percolating network is formed.
Collapse
Affiliation(s)
- Santi Prestipino
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Gianmarco Munaò
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Dino Costa
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Carlo Caccamo
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
19
|
Zeng X, Li ZW, Zheng X, Zhu L, Sun ZY, Lu ZY, Huang X. Improving the productivity of monodisperse polyhedral cages by the rational design of kinetic self-assembly pathways. Phys Chem Chem Phys 2018; 20:10030-10037. [PMID: 29620122 DOI: 10.1039/c8cp00522b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hollow polyhedral cages hold great potential for application in nanotechnological and biomedical fields. Understanding the formation mechanism of these self-assembled structures could provide guidance for the rational design of the desired polyhedral cages. Here, by constructing kinetic network models from extensive coarse-grained molecular dynamics simulations, we elucidated the formation mechanism of the dodecahedral cage, which is formed by the self-assembly of patchy particles. We found that the dodecahedral cage is formed through increasing the aggregate size followed by structure rearrangement. Based on this mechanistic understanding, we improved the productivity of the dodecahedral cage through the rational design of the patch arrangement of patchy particles, which promotes the structural rearrangement process. Our results demonstrate that it should be a feasible strategy to achieve the rational design of the desired nanostructures via the kinetic analysis. We anticipate that this methodology could be extended to other self-assembly systems for the fabrication of functional nanomaterials.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhu YL, Pan D, Li ZW, Liu H, Qian HJ, Zhao Y, Lu ZY, Sun ZY. Employing multi-GPU power for molecular dynamics simulation: an extension of GALAMOST. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1434904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin Province, China
| | - Deng Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin Province, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin Province, China
| | - Hong Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province, China
| | - Yang Zhao
- National Supercomputer Center in Tianjin, Tianjin, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin Province, China
| |
Collapse
|
21
|
|
22
|
Rezvantalab H, Beltran-Villegas DJ, Larson RG. Phase diagram of Janus particles: The missing dimension of pressure anisotropy. J Chem Phys 2017; 147:064510. [PMID: 28810762 DOI: 10.1063/1.4997784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Brownian dynamics simulations of single-patch Janus particles under sedimentation equilibrium reveal that the phases found at fixed temperature and volume fraction are extremely sensitive to small changes in lateral box dimension. We trace this sensitivity to an uncontrolled parameter, namely, the pressure component parallel to the hexagonally ordered layers formed through sedimentation. We employ a flexible-cell constant-pressure scheme to achieve explicit control over this usually overlooked parameter, enabling the estimation of phase behavior under given pressure anisotropy. Our results show an increase in the stability range of an orientationally ordered lamellar phase with lateral layer compression and suggest a novel mechanism to control solid-solid phase transitions with negligible change in system volume, thus showing prospect for design of novel structures and switchable crystals from anisotropic building blocks.
Collapse
Affiliation(s)
- Hossein Rezvantalab
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Ronald G Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
23
|
Rezvantalab H, Beltran-Villegas DJ, Larson RG. Rotator-to-Lamellar Phase Transition in Janus Colloids Driven by Pressure Anisotropy. PHYSICAL REVIEW LETTERS 2016; 117:128001. [PMID: 27689298 DOI: 10.1103/physrevlett.117.128001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 06/06/2023]
Abstract
We demonstrate through Brownian dynamics simulations a phase transition in plastic crystalline assemblies of Janus spheres through controlled pressure anisotropy. When the pressure in plane with hexagonally ordered layers is increased relative to that normal to the layers, a rapid first-order rotator-to-lamellar transition of Janus sphere orientation occurs at constant temperature. We show that the underlying mechanism closely follows the Maier-Saupe theory, originally developed for isotropic-to-nematic transition in positionally disordered materials but here applied to positionally ordered ones. Since the transition involves almost no translational diffusion or volume change, and occurs rapidly by particle rotation, the results should help guide the design of rapidly switchable colloidal crystals.
Collapse
Affiliation(s)
- Hossein Rezvantalab
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Ronald G Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
24
|
An efficient strategy for preparation of polymeric Janus particles with controllable morphologies and emulsifiabilities. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|