1
|
Li S, Xue Z, Wang X, Xu D. Molecular dynamics exploration of the barrier properties of small gas molecules in the semicrystalline parylene C. Phys Chem Chem Phys 2025; 27:8868-8877. [PMID: 40202487 DOI: 10.1039/d4cp04226c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Poly(chloro-p-xylylene) (parylene C) is recognized for its outstanding chemical resistance, high thermal stability, biocompatibility, and superior permeability barrier properties. This material predominantly exists in a semicrystalline state. Despite its significance, theoretical studies simulating the semicrystalline parylene C system are scarce. This study aims to elucidate the relationship between the semicrystalline structures and the barrier properties of parylene C through a molecular dynamics approach. Semicrystalline parylene C with 10-50% aligned regions were constructed, which exhibited a degree of crystallinity ranging from 17% to 44%. We discovered that increased aligned chains could significantly alter the material's structure and morphology. These changes could further lead to variations in the density, fractional free volume, and pore size distribution of parylene C, thus affecting its glass transition temperature, permeability barrier and mechanical properties. Additionally, the relative values of gas permeability coefficients closely match experimental data. The insights into the structure-property relationship presented in this work could offer valuable guidance for developing functionalized and structured parylene C as coating materials.
Collapse
Affiliation(s)
- Shuo Li
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Zhiyu Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Xin Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| |
Collapse
|
2
|
Hassanabad AF, Deniset JF, Fedak PWM. Pericardial Inflammatory Mediators That Can Drive Postoperative Atrial Fibrillation in Cardiac Surgery Patients. Can J Cardiol 2023; 39:1090-1102. [PMID: 37301368 DOI: 10.1016/j.cjca.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Postoperative atrial fibrillation (POAF) is a common dysrhythmia that affects a significant number of patients undergoing cardiac surgery. Many studies aim to better understand this complex postsurgical complication by analysing circulating biomarkers in patients who develop POAF. More recently, the pericardial space was shown to contain inflammatory mediators that could trigger POAF. In this review we summarise recent studies that examine the immune mediators present in the pericardial space and their potential implications for the pathophysiology of POAF in cardiac surgery patients. Ongoing research in this area should better delineate the multifactorial etiology of POAF, where specific markers may be targeted to reduce the incidence of POAF and improve outcomes for this patient population.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin F Deniset
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
3
|
Omidian H, Babanejad N, Cubeddu LX. Nanosystems in Cardiovascular Medicine: Advancements, Applications, and Future Perspectives. Pharmaceutics 2023; 15:1935. [PMID: 37514121 PMCID: PMC10386572 DOI: 10.3390/pharmaceutics15071935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of morbidity and mortality globally. Despite significant advancements in the development of pharmacological therapies, the challenges of targeted drug delivery to the cardiovascular system persist. Innovative drug-delivery systems have been developed to address these challenges and improve therapeutic outcomes in CVDs. This comprehensive review examines various drug delivery strategies and their efficacy in addressing CVDs. Polymeric nanoparticles, liposomes, microparticles, and dendrimers are among the drug-delivery systems investigated in preclinical and clinical studies. Specific strategies for targeted drug delivery, such as magnetic nanoparticles and porous stent surfaces, are also discussed. This review highlights the potential of innovative drug-delivery systems as effective strategies for the treatment of CVDs.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Niloofar Babanejad
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Luigi X Cubeddu
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
4
|
Kim TY, Shin S, Choi H, Jeong SH, Myung D, Hahn SK. Smart Contact Lenses with a Transparent Silver Nanowire Strain Sensor for Continuous Intraocular Pressure Monitoring. ACS APPLIED BIO MATERIALS 2021; 4:4532-4541. [PMID: 35006789 PMCID: PMC10867858 DOI: 10.1021/acsabm.1c00267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Continuous intraocular pressure (IOP) monitoring can provide a paradigm shift in the management of patients with glaucoma as a facile alternative to conventional diagnostic methods. However, the low sensitivity and functional instability of current IOP sensors have limited their clinical utility in the management of glaucoma. Here, we have developed a smart contact lens integrated with a transparent silver nanowire IOP strain sensor and wireless circuits for noninvasive, continuous IOP monitoring. After confirming the robust stability of the IOP sensor within the smart contact lens in the presence of tears and repeated eyelid blink model cycles, we were able to monitor IOP changes on polydimethylsiloxane model eyes in vitro. In vivo tests demonstrated that our fully integrated wireless smart contact lens could successfully monitor the change in IOP in living rabbit eyes, which was clearly validated by the conventional invasive tonometer IOP test. Taken together, we could confirm the feasibility of our smart contact lens as a noninvasive platform for continuous IOP monitoring of glaucoma patients.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Sangbaie Shin
- PHI BIOMED Co., 168 Yeoksam-ro, Gangnam-gu, Seoul 06248, South Korea
| | - Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Sang Hoon Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - David Myung
- Department of Ophthalmology and Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
- PHI BIOMED Co., 168 Yeoksam-ro, Gangnam-gu, Seoul 06248, South Korea
- Department of Ophthalmology and Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
5
|
Systematic review of pre-clinical therapies for post-operative atrial fibrillation. PLoS One 2020; 15:e0241643. [PMID: 33147274 PMCID: PMC7641461 DOI: 10.1371/journal.pone.0241643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/16/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Post-operative atrial fibrillation (POAF) is a frequent cardiothoracic surgery complication that increases hospital stay, mortality and costs. Despite decades of research, there has been no systematic overview and meta-analysis of preclinical therapies for POAF in animal models. METHODS We performed a systematic search of MEDLINE and EMBASE from their inception through September 2020 to determine the effect of preclinical POAF therapies on primary efficacy outcomes using a prospectively registered protocol (CRD42019155649). Bias was assessed using the SYRCLE tool and CAMARADES checklist. RESULTS Within the 26 studies that fulfilled our inclusion criteria, we identified 4 prevention strategies including biological (n = 5), dietary (n = 2), substrate modification (n = 2), and pharmacological (n = 17) interventions targeting atrial substrate, cellular electrophysiology or inflammation. Only one study altered more than 1 pathophysiological mechanism. 73% comprised multiple doses of systemic therapies. Large animal models were used in 81% of the studies. Preclinical therapies altogether attenuated atrial fibrosis (SMD -2.09; 95% confidence interval [CI] -2.95 to -1.22; p < 0.00001; I2 = 47%), AF inducibility (RR 0.40; 95% CI 0.21 to 0.79; p = 0.008; I2 = 39%), and AF duration (SMD -2.19; 95% CI -3.05 to -1.32; p < 0.00001; I2 = 50%). However, all the criteria needed to evaluate the risk of bias was unclear for many outcomes and only few interventions were independently validated by more than 1 research group. CONCLUSION Treatments with therapies targeting atrial substrate, cellular electrophysiology or inflammation reduced POAF in preclinical animal models compared to controls. Improving the quality of outcome reporting, independently validating promising approaches and targeting complimentary drivers of POAF are promising means to improve the clinical translation of novel therapies for this highly prevalent and clinically meaningful disease.
Collapse
|
6
|
Garcia JR, Campbell PF, Kumar G, Langberg JJ, Cesar L, Deppen JN, Shin EY, Bhatia NK, Wang L, Xu K, Schneider F, Robinson B, García AJ, Levit RD. Minimally Invasive Delivery of Hydrogel-Encapsulated Amiodarone to the Epicardium Reduces Atrial Fibrillation. Circ Arrhythm Electrophysiol 2019; 11:e006408. [PMID: 29748197 DOI: 10.1161/circep.118.006408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common cardiac arrhythmia. Although treatment options for AF exist, many patients cannot be maintained in normal sinus rhythm. Amiodarone is an effective medication for AF but has limited clinical utility because of off-target tissue toxicity. METHODS Here, we use a pig model of AF to test the efficacy of an amiodarone-containing polyethylene glycol-based hydrogel. The gel is placed directly on the atrial epicardium through the pericardial space in a minimally invasive procedure using a specially designed catheter. RESULTS Implantation of amiodarone-containing gel significantly reduced the duration of sustained AF at 21 and 28 days; inducibility of AF was reduced 14 and 21 days post-delivery. Off-target organ drug levels in the liver, lungs, thyroid, and fat were significantly reduced in animals treated with epicardial amiodarone gel compared with systemic controls in small-animal distribution studies. CONCLUSIONS The pericardium is an underutilized therapeutic site and may be a new treatment strategy for AF and other cardiovascular diseases.
Collapse
Affiliation(s)
- Jose R Garcia
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience (J.R.G., A.J.G.)
| | - Peter F Campbell
- Georgia Institute of Technology, Atlanta. InnovatiëLifeSciences, Santa Clara, CA (P.F.C.)
| | - Gautam Kumar
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.).,Emory University School of Medicine, Atlanta, GA. Division of Cardiology, Atlanta VA Medical Center, Decatur, GA (G.K.)
| | - Jonathan J Langberg
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| | - Liliana Cesar
- South Atlanta Veterinary Emergency Specialists, Fayetteville, GA (L.C.)
| | - Juline N Deppen
- and Walter H. Coulter Department of Biomedical Engineering (J.N.D.).,Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| | - Eric Y Shin
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| | - Neal K Bhatia
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| | - Kai Xu
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| | - Frank Schneider
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.).,and Department of Pathology and Laboratory Medicine (F.S., B.R.)
| | - Brian Robinson
- and Department of Pathology and Laboratory Medicine (F.S., B.R.)
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience (J.R.G., A.J.G.)
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| |
Collapse
|
7
|
Li T, Liang W, Xiao X, Qian Y. Nanotechnology, an alternative with promising prospects and advantages for the treatment of cardiovascular diseases. Int J Nanomedicine 2018; 13:7349-7362. [PMID: 30519019 PMCID: PMC6233477 DOI: 10.2147/ijn.s179678] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the most important causes of mortality and affecting the health status of patients. At the same time, CVDs cause a huge health and economic burden to the whole world. Although a variety of therapeutic drugs and measures have been produced to delay the progress of the disease and improve the quality of life of patients, most of the traditional therapeutic strategies can only cure the symptoms and cannot repair or regenerate the damaged ischemic myocardium. In addition, they may bring some unpleasant side effects. Therefore, it is vital to find and explore new technologies and drugs to solve the shortcomings of conventional treatments. Nanotechnology is a new way of using and manipulating the matter at the molecular scale, whose functional organization is measured in nanometers. Because nanoscale phenomena play an important role in cell signal transduction, enzyme action and cell cycle, nanotechnology is closely related to medical research. The application of nanotechnology in the field of medicine provides an alternative and novel direction for the treatment of CVDs, and shows excellent performance in the field of targeted drug therapy and the development of biomaterials. This review will briefly introduce the latest applications of nanotechnology in the diagnosis and treatment of common CVDs.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China,
| | - Weitao Liang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China,
| | - Xijun Xiao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China,
| | - Yongjun Qian
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China,
| |
Collapse
|
8
|
Ferraris VA. Pericardial adhesions and cardiac surgeons' nightmares. J Thorac Cardiovasc Surg 2018; 156:1609-1610. [PMID: 29730108 DOI: 10.1016/j.jtcvs.2018.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Victor A Ferraris
- Division of Cardiothoracic Surgery, Department of Surgery, University of Kentucky, Kentucky Clinic, Lexington, Ky.
| |
Collapse
|
9
|
Wang Y, Wu M, Gu L, Li X, He J, Zhou L, Tong A, Shi J, Zhu H, Xu J, Guo G. Effective improvement of the neuroprotective activity after spinal cord injury by synergistic effect of glucocorticoid with biodegradable amphipathic nanomicelles. Drug Deliv 2017; 24:391-401. [PMID: 28165815 PMCID: PMC8241193 DOI: 10.1080/10717544.2016.1256003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 02/05/2023] Open
Abstract
Dexamethasone acetate (DA) produces neuroprotective effects by inhibiting lipid peroxidation and inflammation by reducing cytokine release and expression. However, its clinical application is limited by its hydrophobicity, low biocompatibility and numerous side effects when using large dosage. Therefore, improving DA's water solubility, biocompatibility and reducing its side effects are important goals that will improve its clinical utility. The objective of this study is to use a biodegradable polymer as the delivery vehicle for DA to achieve the synergism between inhibiting lipid peroxidation and inflammation effects of the hydrophobic-loaded drugs and the amphipathic delivery vehicle. We successfully prepared DA-loaded polymeric micelles (DA/MPEG-PCL micelles) with monodispersed and approximately 25 nm in diameter, and released DA over an extended period in vitro. Additionally, in the hemisection spinal cord injury (SCI) model, DA micelles were more effective in promoting hindlimb functional recover, reducing glial scar and cyst formation in injured site, decreasing neuron lose and promoting axon regeneration. Therefore, our data suggest that DA/MPEG-PCL micelles have the potential to be applied clinically in SCI therapy.
Collapse
Affiliation(s)
- YueLong Wang
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Min Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, PR China
| | - Lei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, PR China
| | - XiaoLing Li
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - LiangXue Zhou
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Juan Shi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China, and
| | - HongYan Zhu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - JianGuo Xu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| |
Collapse
|
10
|
Zhu Y, Deng G, Ji A, Yao J, Meng X, Wang J, Wang Q, Wang Q, Wang R. Porous Se@SiO 2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress. Int J Nanomedicine 2017; 12:7143-7152. [PMID: 29026307 PMCID: PMC5627737 DOI: 10.2147/ijn.s143192] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute paraquat (PQ) poisoning is one of the most common forms of pesticide poisoning. Oxidative stress and inflammation are thought to be important mechanisms in PQ-induced acute lung injury (ALI). Selenium (Se) can scavenge intracellular free radicals directly or indirectly. In this study, we investigated whether porous Se@SiO2 nanospheres could alleviate oxidative stress and inflammation in PQ-induced ALI. Male Sprague Dawley rats and RLE-6TN cells were used in this study. Rats were categorized into 3 groups: control (n=6), PQ (n=18), and PQ + Se@SiO2 (n=18). The PQ and PQ + Se@SiO2 groups were randomly and evenly divided into 3 sub-groups according to different time points (24, 48 and 72 h) after PQ treatment. Porous Se@SiO2 nanospheres 1 mg/kg (in the PQ + Se@SiO2 group) were administered via intraperitoneal injection every 24 h. Expression levels of reduced glutathione, malondialdehyde, superoxide dismutase, reactive oxygen species (ROS), nuclear factor-κB (NF-κB), phosphorylated NF-κB (p-NF-κB), tumor necrosis factor-α and interleukin-1β were detected, and a histological analysis of rat lung tissues was performed. The results showed that the levels of ROS, malondialdehyde, NF-κB, p-NF-κB, tumor necrosis factor-α and interleukin-1β were markedly increased after PQ treatment. Glutathione and superoxide dismutase levels were reduced. However, treatment with porous Se@SiO2 nanospheres markedly alleviated PQ-induced oxidative stress and inflammation. Additionally, the results from histological examinations and wet-to-dry weight ratios of rat lung tissues showed that lung damage was reduced after porous Se@SiO2 nanosphere treatment. These data indicate that porous Se@SiO2 nanospheres may reduce NF-κB, p-NF-κB and inflammatory cytokine levels by inhibiting ROS in PQ-induced ALI. This study demonstrates that porous Se@SiO2 nanospheres may be a therapeutic method for use in the future for PQ poisoning.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Anqi Ji
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jiayi Yao
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| | - Xiaoxiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| | - Jinfeng Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| | - Qian Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Qiugen Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| |
Collapse
|
11
|
The Role of Biologically Active Ingredients from Natural Drug Treatments for Arrhythmias in Different Mechanisms. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4615727. [PMID: 28497050 PMCID: PMC5405360 DOI: 10.1155/2017/4615727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022]
Abstract
Arrhythmia is a disease that is caused by abnormal electrical activity in the heart rate or rhythm. It is the major cause of cardiovascular morbidity and mortality. Although several antiarrhythmic drugs have been used in clinic for decades, their application is often limited by their adverse effects. As a result, natural drugs, which have fewer side effects, are now being used to treat arrhythmias. We searched for all articles on the role of biologically active ingredients from natural drug treatments for arrhythmias in different mechanisms in PubMed. This study reviews 19 natural drug therapies, with 18 active ingredient therapies, such as alkaloids, flavonoids, saponins, quinones, and terpenes, and two kinds of traditional Chinese medicine compound (Wenxin-Keli and Shensongyangxin), all of which have been studied and reported as having antiarrhythmic effects. The primary focus is the proposed antiarrhythmic mechanism of each natural drug agent. Conclusion. We stress persistent vigilance on the part of the provider in discussing the use of natural drug agents to provide a solid theoretical foundation for further research on antiarrhythmia drugs.
Collapse
|
12
|
Deng G, Niu K, Zhou F, Li B, Kang Y, Liu X, Hu J, Li B, Wang Q, Yi C, Wang Q. Treatment of steroid-induced osteonecrosis of the femoral head using porous Se@SiO 2 nanocomposites to suppress reactive oxygen species. Sci Rep 2017; 7:43914. [PMID: 28256626 PMCID: PMC5335566 DOI: 10.1038/srep43914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/30/2017] [Indexed: 01/11/2023] Open
Abstract
Reducing oxidative stress (ROS) have been demonstrated effective for steroid-induced osteonecrosis of the femoral head (steroid-induced ONFH). Selenium (Se) plays an important role in suppressing oxidative stress and has huge potential in ONFH treatments. However the Se has a narrow margin between beneficial and toxic effects which make it hard for therapy use in vivo. In order to make the deficiency up, a control release of Se (Se@SiO2) were realized by nanotechnology modification. Porous Se@SiO2 nanocomposites have favorable biocompatibility and can reduced the ROS damage effectively. In vitro, the cck-8 analysis, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) stain and flow cytometry analysis showed rare negative influence by porous Se@SiO2 nanocomposites but significantly protective effect against H2O2 by reducing ROS level (detected by DCFH-DA). In vivo, the biosafety of porous Se@SiO2 nanocomposites were confirmed by the serum biochemistry, the ROS level in serum were significantly reduced and the curative effect were confirmed by Micro CT scan, serum Elisa assay (inflammatory factors), Western blotting (quantitative measurement of ONFH) and HE staining. It is expected that the porous Se@SiO2 nanocomposites may prevent steroid-induced ONFH by reducing oxidative stress.
Collapse
Affiliation(s)
- Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xin Songjiang Road, Shanghai 201620, P.R. China
| | - Kerun Niu
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Feng Zhou
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Buxiao Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xin Songjiang Road, Shanghai 201620, P.R. China
| | - Yingjie Kang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine. No. 528, Zhangheng Road, Shanghai 201203, P.R. China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P.R. China
| | - Junqing Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Bo Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | - Qiugen Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xin Songjiang Road, Shanghai 201620, P.R. China
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, P.R. China
| | - Qian Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xin Songjiang Road, Shanghai 201620, P.R. China.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| |
Collapse
|
13
|
Mambrini G, Mandolini M, Rossi L, Pierigè F, Capogrossi G, Salvati P, Serafini S, Benatti L, Magnani M. Ex vivo encapsulation of dexamethasone sodium phosphate into human autologous erythrocytes using fully automated biomedical equipment. Int J Pharm 2016; 517:175-184. [PMID: 27939571 DOI: 10.1016/j.ijpharm.2016.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/14/2016] [Accepted: 12/05/2016] [Indexed: 02/01/2023]
Abstract
Erythrocyte-based drug delivery systems are emerging as potential new solutions for the release of drugs into the bloodstream. The aim of the present work was to assess the performance of a fully automated process (EDS) for the ex-vivo encapsulation of the pro-drug dexamethasone sodium phosphate (DSP) into autologous erythrocytes in compliance with regulatory requirements. The loading method was based on reversible hypotonic hemolysis, which allows the opening of transient pores in the cell membrane to be crossed by DSP. The efficiency of encapsulation and the biochemical and physiological characteristics of the processed erythrocytes were investigated in blood samples from 34 healthy donors. It was found that the processed erythrocytes maintained their fundamental properties and the encapsulation process was reproducible. The EDS under study showed greater loading efficiency and reduced variability compared to previous EDS versions. Notably, these results were confirmed using blood samples from Ataxia Telangiectasia (AT) patients, 9.33±1.40 and 19.41±2.10mg of DSP (mean±SD, n=134) by using 62.5 and 125mg DSP loading quantities, respectively. These results support the use of the new EDS version 3.2.0 to investigate the effect of erythrocyte-delivered dexamethasone in regulatory trials in patients with AT.
Collapse
Affiliation(s)
| | | | - Luigia Rossi
- EryDel SpA, via Sasso 36, 61029, Urbino (PU), Italy; Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029, Urbino (PU), Italy.
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029, Urbino (PU), Italy.
| | | | | | | | - Luca Benatti
- EryDel SpA, via Sasso 36, 61029, Urbino (PU), Italy.
| | - Mauro Magnani
- EryDel SpA, via Sasso 36, 61029, Urbino (PU), Italy; Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029, Urbino (PU), Italy.
| |
Collapse
|