1
|
Nazarov IV, Zarezin DP, Solomatov IA, Danshina AA, Nelyubina YV, Ilyasov IR, Bermeshev MV. Chiral Polymers from Norbornenes Based on Renewable Chemical Feedstocks. Polymers (Basel) 2022; 14:polym14245453. [PMID: 36559820 PMCID: PMC9786787 DOI: 10.3390/polym14245453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Optically active polymers are of great interest as materials for dense enantioselective membranes, as well as chiral stationary phases for gas and liquid chromatography. Combining the versatility of norbornene chemistry and the advantages of chiral natural terpenes in one molecule will open up a facile route toward the synthesis of diverse optically active polymers. Herein, we prepared a set of new chiral monomers from cis-5-norbornene-2,3-dicarboxylic anhydride and chiral alcohols of various natures. Alcohols based on cyclic terpenes ((-)-menthol, (-)-borneol and pinanol), as well as commercially available alcohols (S-(-)-2-methylbutanol-1, S-(+)-3-octanol), were used. All the synthesized monomers were successfully involved in ring-opening metathesis polymerization, affording polymers in high yields (up to 96%) and with molecular weights in the range of 1.9 × 105-5.8 × 105 (Mw). The properties of the metathesis polymers obtained were studied by TGA and DSC analysis, WAXD, and circular dichroism spectroscopy. The polymers exhibited high thermal stability and good film-forming properties. Glass transition temperatures for the prepared polymers varied from -30 °C to +139 °C and, therefore, the state of the polymers changed from rubbery to glassy. The prepared polymers represent a new attractive platform of chiral polymeric materials for enantioselective membrane separation and chiral stationary phases for chromatography.
Collapse
Affiliation(s)
- Ivan V. Nazarov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy Pr., 119991 Moscow, Russia
| | - Danil P. Zarezin
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy Pr., 119991 Moscow, Russia
| | - Ivan A. Solomatov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy Pr., 119991 Moscow, Russia
| | - Anastasya A. Danshina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy Per., 9, 141700 Dolgoprudny, Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Igor R. Ilyasov
- Nelubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia
| | - Maxim V. Bermeshev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy Pr., 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-495-647-59-27 (ext. 379)
| |
Collapse
|
2
|
Homology Modeling, Molecular Docking, Molecular Dynamic Simulation, and Drug-Likeness of the Modified Alpha-Mangostin against the β-Tubulin Protein of Acanthamoeba Keratitis. Molecules 2022; 27:molecules27196338. [PMID: 36234875 PMCID: PMC9572066 DOI: 10.3390/molecules27196338] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Acanthamoeba species are capable of causing amoebic keratitis (AK). As a monotherapy, alpha-mangostin is effective for the treatment of AK; however, its bioavailability is quite poor. Moreover, the efficacy of therapy is contingent on the parasite and virulent strains. To improve readiness against AK, it is necessary to find other derivatives with accurate target identification. Beta-tubulin (BT) has been used as a target for anti-Acanthamoeba (A. keratitis). In this work, therefore, a model of the BT protein of A. keratitis was constructed by homology modeling utilizing the amino acid sequence from NCBI (GenBank: JQ417907.1). Ramachandran Plot was responsible for validating the protein PDB. The verified BT PDB was used for docking with the specified ligand. Based on an improved docking score compared to alpha-mangostin (AM), two modified compounds were identified: 1,6-dihydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C1) and 1,6-dihydroxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C2). In addition, molecular dynamics simulations were conducted to analyze the interaction characteristics of the two bound BT–new compound complexes. During simulations, the TRP9, ARG50, VAL52, and GLN122 residues of BT-C1 that align to the identical residues in BT-AM generate consistent hydrogen bond interactions with 0–3 and 0–2. However, the BT-C2 complex has a different binding site, TYR 258, ILE 281, and SER 302, and can form more hydrogen bonds in the range 0–4. Therefore, this study reveals that C1 and C2 inhibit BT as an additive or synergistic effect; however, further in vitro and in vivo studies are needed.
Collapse
|
3
|
Siddiquee MN, Hossain MM, Nazemifard N. Liquid Phase Oxidation of Hydrocarbons to High-Value Chemicals in Microfluidic Reactors - Prospects and Challenges. CHEM REC 2022; 22:e202200022. [PMID: 35502847 DOI: 10.1002/tcr.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Indexed: 11/05/2022]
Abstract
Liquid phase oxidation (LPO) of hydrocarbon is an industrially important process to produce petrochemicals and pharmaceuticals. It follows a free radical path having initiation, propagation and termination. The initiation step is slow while the propagation and termination steps are fast. The main challenge of such process is to control product selectivity at an appreciable conversion level. With the advancement of microfluidic reactor technology, it is possible to control the free radical steps. The present contribution critically reviewed the reaction engineering aspects of LPO of hydrocarbon, the influence of microfluidic reactor design and operation on reaction mechanism, conversion and product selectivity. It also outlines the challenges associated with microfluidic reactor operation, and prospects to apply the understanding from microfluidic reactors in few sectors. The understanding from the free radical oxidation process can also be applied to any other free radical processes.
Collapse
Affiliation(s)
- Muhammad N Siddiquee
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5050, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Refining & Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5050, Dhahran, 31261, Saudi Arabia
| | - Mohammad M Hossain
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5050, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Refining & Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5050, Dhahran, 31261, Saudi Arabia
| | - Neda Nazemifard
- Department of Chemical Engineering, University of Alberta, 9211-116th Street, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
4
|
Wan L, Jiang M, Cheng D, Liu M, Chen F. Continuous flow technology-a tool for safer oxidation chemistry. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00520k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advantages and benefits of continuous flow technology for oxidation chemistry have been illustrated in tube reactors, micro-channel reactors, tube-in-tube reactors and micro-packed bed reactors in the presence of various oxidants.
Collapse
Affiliation(s)
- Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
5
|
Elsherbini M, Huynh F, Dunbabin A, Allemann RK, Wirth T. Selective Hydroboration-Oxidation of Terminal Alkenes under Flow Conditions. Chemistry 2020; 26:11423-11425. [PMID: 32329919 PMCID: PMC7540268 DOI: 10.1002/chem.202001650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Indexed: 11/20/2022]
Abstract
An efficient flow process for the selective hydroboration and oxidation of different alkenes using 9-borabicyclo(3.3.1)nonane (9-BBN) allows facile conversion in high productivity (1.4 g h-1 ) of amorpha-4,11-diene to the corresponding alcohol, which is an advanced intermediate in the synthesis of the antimalarial drug artemisinin. The in situ reaction of borane and 1,5-cyclooctadiene using a simple flow generator proved to be a cost efficient solution for the generation of 9-BBN.
Collapse
Affiliation(s)
- Mohamed Elsherbini
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Florence Huynh
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Alice Dunbabin
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Rudolf K. Allemann
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Thomas Wirth
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
6
|
Abstract
Organic chemistry is continually evolving to improve the syntheses of value added and bioactive compounds. Through this progression, a concomitant advancement in laboratory technology has occurred. Many researchers now choose to mediate transformations in continuous-flow systems given the many benefits over round bottom flasks. Furthermore, reaction scale up is often less problematic as this is addressed at the inception of the science. Although single-step transformations in continuous-flow systems are common, multi-step transformations are more valuable. In these systems, molecular complexity is accrued through sequential transformations to a mobile scaffold, much like an in vitro version of Nature's polyketide synthases. Utilizing this methodology, multi-step continuous-flow systems have improved the syntheses of active pharmaceutical ingredients (APIs), natural products, and commodity chemicals. This Review details these advancements while highlighting the rapid progress, benefits, and diversification of this expanding field.
Collapse
Affiliation(s)
- Joshua Britton
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - Colin L Raston
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, South Australia 5042, Australia.
| |
Collapse
|
7
|
Kitching MO, Dixon OE, Baumann M, Baxendale IR. Flow-Assisted Synthesis: A Key Fragment of SR 142948A. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Olivia E. Dixon
- Department of Chemistry; University of Durham; South Road DH1 3LE Durham UK
| | - Marcus Baumann
- Department of Chemistry; University of Durham; South Road DH1 3LE Durham UK
| | - Ian R. Baxendale
- Department of Chemistry; University of Durham; South Road DH1 3LE Durham UK
| |
Collapse
|
8
|
Billamboz M, Imbs C, Banaszak-Léonard E, Len C. Selective One-Pot Three-Step Cascade Reaction: From Aromatic Aldehydes to 2,2-Diphenylethanol Derivatives. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.6b00382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Muriel Billamboz
- Ecole Supérieure de Chimie Organique et Minérale, 1 rue du Réseau Jean-Marie
Buckmaster, F-60200 Compiègne, France
- Ecole des Hautes Etudes d’Ingénieur (HEI), Yncréa Hauts-de-France, UCLille, Laboratoire de Pharmacochimie, 13 Rue de Toul, F-59046 Lille, France
| | - Claire Imbs
- Sorbonne Universités, Université de Technologie de Compiègne, Centre de Recherche Royallieu, CS 60 319, F-60203 Compiègne cedex, France
| | - Estelle Banaszak-Léonard
- Ecole Supérieure de Chimie Organique et Minérale, 1 rue du Réseau Jean-Marie
Buckmaster, F-60200 Compiègne, France
| | - Christophe Len
- Sorbonne Universités, Université de Technologie de Compiègne, Centre de Recherche Royallieu, CS 60 319, F-60203 Compiègne cedex, France
| |
Collapse
|
9
|
Gemoets HPL, Su Y, Shang M, Hessel V, Luque R, Noël T. Liquid phase oxidation chemistry in continuous-flow microreactors. Chem Soc Rev 2016. [DOI: 10.1039/c5cs00447k] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review gives an exhaustive overview of the engineering principles, safety aspects and chemistry associated with liquid phase oxidation in continuous-flow microreactors.
Collapse
Affiliation(s)
- Hannes P. L. Gemoets
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry & Process Technology
- Eindhoven University of Technology
- 5612 AZ Eindhoven
- The Netherlands
| | - Yuanhai Su
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry & Process Technology
- Eindhoven University of Technology
- 5612 AZ Eindhoven
- The Netherlands
| | - Minjing Shang
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry & Process Technology
- Eindhoven University of Technology
- 5612 AZ Eindhoven
- The Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry & Process Technology
- Eindhoven University of Technology
- 5612 AZ Eindhoven
- The Netherlands
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- E14014 Cordoba
- Spain
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry & Process Technology
- Eindhoven University of Technology
- 5612 AZ Eindhoven
- The Netherlands
| |
Collapse
|
10
|
Porta R, Benaglia M, Puglisi A. Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products. Org Process Res Dev 2015. [DOI: 10.1021/acs.oprd.5b00325] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Riccardo Porta
- Dipartimento di Chimica, Università degli Studi di Milano Via Golgi 19, I-20133 Milano, Italy
| | - Maurizio Benaglia
- Dipartimento di Chimica, Università degli Studi di Milano Via Golgi 19, I-20133 Milano, Italy
| | - Alessandra Puglisi
- Dipartimento di Chimica, Università degli Studi di Milano Via Golgi 19, I-20133 Milano, Italy
| |
Collapse
|
11
|
Lau SH, Galván A, Merchant RR, Battilocchio C, Souto JA, Berry MB, Ley SV. Machines vs Malaria: A Flow-Based Preparation of the Drug Candidate OZ439. Org Lett 2015; 17:3218-21. [DOI: 10.1021/acs.orglett.5b01307] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shing-Hing Lau
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Alicia Galván
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Rohan R. Merchant
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Claudio Battilocchio
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - José A. Souto
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
- Departamento
de Química Orgánica, Universidade de Vigo, Vigo, 36310, Spain
| | | | - Steven V. Ley
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|