1
|
Zhou M, Liu C, Li B, Li J, Zhang P, Huang Y, Li L. Cell surface patching via CXCR4-targeted nanothreads for cancer metastasis inhibition. Nat Commun 2024; 15:2763. [PMID: 38553476 PMCID: PMC10980815 DOI: 10.1038/s41467-024-47111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
The binding of therapeutic antagonists to their receptors often fail to translate into adequate manipulation of downstream pathways. To fix this 'bug', here we report a strategy that stitches cell surface 'patches' to promote receptor clustering, thereby synchronizing subsequent mechano-transduction. The "patches" are sewn with two interactable nanothreads. In sequence, Nanothread-1 strings together adjacent receptors while presenting decoy receptors. Nanothread-2 then targets these decoys multivalently, intertwining with Nanothread-1 into a coiled-coil supramolecular network. This stepwise actuation clusters an extensive vicinity of receptors, integrating mechano-transduction to disrupt signal transmission. When applied to antagonize chemokine receptors CXCR4 expressed in metastatic breast cancer of female mice, this strategy elicits and consolidates multiple events, including interception of metastatic cascade, reversal of immunosuppression, and potentiation of photodynamic immunotherapy, reducing the metastatic burden. Collectively, our work provides a generalizable tool to spatially rearrange cell-surface receptors to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Minglu Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chendong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Junlin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ping Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Dobitz S, Wilhelm P, Romantini N, De Foresta M, Walther C, Ritler A, Schibli R, Berger P, Deupi X, Béhé M, Wennemers H. Distance-Dependent Cellular Uptake of Oligoproline-Based Homobivalent Ligands Targeting GPCRs-An Experimental and Computational Analysis. Bioconjug Chem 2020; 31:2431-2438. [PMID: 33047605 DOI: 10.1021/acs.bioconjchem.0c00484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor targeting with bivalent radiolabeled ligands for GPCRs is an attractive means for cancer imaging and therapy. Here, we studied and compared the distance dependence of homobivalent ligands for the human gastrin-releasing peptide receptor (hGRP-R) and the somatostatin receptor subtype II (hSstR2a). Oligoprolines were utilized as molecular scaffolds to enable distances of 10, 20, or 30 Å between two identical, agonistic recognition motifs. In vitro internalization assays revealed that ligands with a distance of 20 Å between the recognition motifs exhibit the highest cellular uptake in both ligand series. Structural modeling and molecular dynamics simulations support an optimal distance of 20 Å for accommodating ligand binding to both binding sites of a GPCR dimer. Translation of these findings to the significantly higher complexity in vivo proved difficult and showed only for the hGRP-R increased tumor uptake of the bivalent ligand.
Collapse
Affiliation(s)
- Stefanie Dobitz
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Patrick Wilhelm
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Nina Romantini
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Martina De Foresta
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Cornelia Walther
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Andreas Ritler
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland.,Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland.,Institute of Radiopharmaceutical Sciences, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Philipp Berger
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Wu CH, Song JS, Kuan HH, Wu SH, Chou MC, Jan JJ, Tsou LK, Ke YY, Chen CT, Yeh KC, Wang SY, Yeh TK, Tseng CT, Huang CL, Wu MH, Kuo PC, Lee CJ, Shia KS. Development of Stem-Cell-Mobilizing Agents Targeting CXCR4 Receptor for Peripheral Blood Stem Cell Transplantation and Beyond. J Med Chem 2018; 61:818-833. [PMID: 29314840 DOI: 10.1021/acs.jmedchem.7b01322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The function of the CXCR4/CXCL12 axis accounts for many disease indications, including tissue/nerve regeneration, cancer metastasis, and inflammation. Blocking CXCR4 signaling with its antagonists may lead to moving out CXCR4+ cell types from bone marrow to peripheral circulation. We have discovered a novel series of pyrimidine-based CXCR4 antagonists, a representative (i.e., 16) of which was tolerated at a higher dose and showed better HSC-mobilizing ability at the maximal response dose relative to the approved drug 1 (AMD3100), and thus considered a potential drug candidate for PBSCT indication. Docking compound 16 into the X-ray crystal structure of CXCR4 receptor revealed that it adopted a spider-like conformation striding over both major and minor subpockets. This putative binding mode provides a new insight into CXCR4 receptor-ligand interactions for further structural modifications.
Collapse
Affiliation(s)
- Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Hsuan-Hao Kuan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Ming-Chen Chou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Jiing-Jyh Jan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Lun K Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Kai-Chia Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Sing-Yi Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Chen-Tso Tseng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Po-Chu Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Chia-Jui Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| |
Collapse
|
4
|
Lin TH, Lin CH, Liu YJ, Huang CY, Lin YC, Wang SK. Controlling Ligand Spacing on Surface: Polyproline-Based Fluorous Microarray as a Tool in Spatial Specificity Analysis and Inhibitor Development for Carbohydrate-Protein Interactions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41691-41699. [PMID: 29148699 DOI: 10.1021/acsami.7b13200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multivalent carbohydrate-protein interactions are essential for many biological processes. Convenient characterization for multivalent binding property of proteins will aid the development of molecules to manipulate these processes. We exploited the polyproline helix II (PPII) structure as molecular scaffolds to adjust the distances between glycan ligand attachment sites at 9, 18, and 27 Å on a peptide scaffold. Optimized fluorous groups were also introduced to the peptide scaffold for immobilization to the microarray surface through fluorous interaction to control the orientation of the helical scaffolds. Using lectin LecA and antibody 2G12 as model proteins, the binding preference to the 27 Å glycopeptide scaffold, matched the distance of 26 Å between its two galactose binding sites on LecA and 31 Å spacing between oligomannose binding sites on 2G12, respectively. We further demonstrate this microarray system can aid the development of inhibitors by transforming the selected surface-bound scaffold into multivalent ligands in solution. This strategy can be extended to analyze proteins that lacking structural information to speed up the design of potent and selective multivalent ligands.
Collapse
Affiliation(s)
- Tse-Hsueh Lin
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Cin-Hao Lin
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Ying-Jie Liu
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Chun Yi Huang
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Yen-Cheng Lin
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| |
Collapse
|
5
|
Tanaka T, Aoki T, Nomura W, Tamamura H. Bivalent 14-mer peptide ligands of CXCR4 with polyproline linkers with anti-chemotactic activity against Jurkat cells. J Pept Sci 2017; 23:574-580. [PMID: 28078743 DOI: 10.1002/psc.2946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/07/2022]
Abstract
Interaction of CXCR4 with its endogenous ligand, stromal-cell derived factor-1 (SDF-1)/CXCL12, induces various physiological functions involving chemotaxis. Bivalent ligands with a polyproline helix bearing a cyclic pentapeptide, FC131, were previously shown to have higher binding affinities for CXCR4 than the corresponding monovalent ligands. Bivalent ligands based on a 14-mer peptide T140 derivative with polyproline linkers have been designed and synthesized. The activity of these peptides as well as the effect of bivalency of the ligand on CXCR4 binding has been assessed. The binding affinity of these series of bivalent ligands is increased as the linker length increases up to the 12-/15-mer proline linker. The inhibitory activity against chemotaxis on Jurkat cells also depends on the linker length. The T140-derived bivalent ligands with the 9- and 12-mer proline linkers showed the most effective inhibition against chemotaxis at 1000 nM, which is even higher than that of known CXCR4 antagonists in the monomer structure. The effective metastatic inhibition by bivalent T140 derivatives indicates the therapeutic potential. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Toru Aoki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
6
|
Grison CM, Robin S, Aitken DJ. The discovery of 9/8-ribbons, β/γ-peptides with curved shapes governed by a combined configuration-conformation code. Chem Commun (Camb) 2015; 51:16233-6. [DOI: 10.1039/c5cc07136d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The design of a β/γ-peptide reveals an unprecedented 9/8-ribbon whose curvature depends on the β-residue configuration and the γ-residue conformation.
Collapse
Affiliation(s)
- Claire M. Grison
- CP3A Organic Synthesis Group
- ICMMO-UMR 8182
- Université Paris-Sud
- Université Paris-Saclay
- 91405 Orsay cedex
| | - Sylvie Robin
- CP3A Organic Synthesis Group
- ICMMO-UMR 8182
- Université Paris-Sud
- Université Paris-Saclay
- 91405 Orsay cedex
| | - David J. Aitken
- CP3A Organic Synthesis Group
- ICMMO-UMR 8182
- Université Paris-Sud
- Université Paris-Saclay
- 91405 Orsay cedex
| |
Collapse
|