1
|
Rossetto D, Cvjetan N, Walde P, Mansy SS. Protocellular Heme and Iron-Sulfur Clusters. Acc Chem Res 2024; 57:2293-2302. [PMID: 39099316 PMCID: PMC11339926 DOI: 10.1021/acs.accounts.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Central to the quest of understanding the emergence of life is to uncover the role of metals, particularly iron, in shaping prebiotic chemistry. Iron, as the most abundant of the accessible transition metals on the prebiotic Earth, played a pivotal role in early biochemical processes and continues to be indispensable to modern biology. Here, we discuss our recent contributions to probing the plausibility of prebiotic complexes with iron, including heme and iron-sulfur clusters, in mediating chemistry beneficial to a protocell. Laboratory experiments and spectroscopic findings suggest plausible pathways, often facilitated by UV light, for the synthesis of heme and iron-sulfur clusters. Once formed, heme displays catalytic, peroxidase-like activity when complexed with amphiphiles. This activity could have been beneficial in two ways. First, heme could have catalytically removed a molecule (H2O2) that could have had degradative effects on a protocell. Second, heme could have helped in the synthesis of the building blocks of life by coupling the reduction of H2O2 with the oxidation of organic substrates. The necessity of amphiphiles to avoid the formation of inactive complexes of heme is telling, as the modern-day electron transport chain possesses heme embedded within a lipid membrane. Conversely, prebiotic iron-sulfur peptides have yet to be reported to partition into lipid membranes, nor have simple iron-sulfur peptides been found to be capable of participating in the synthesis of organic molecules. Instead, iron-sulfur peptides span a wide range of reduction potentials complementary to the reduction potentials of hemes. The reduction potential of iron-sulfur peptides can be tuned by the type of iron-sulfur cluster formed, e.g., [2Fe-2S] versus [4Fe-4S], or by the substitution of ligands to the metal center. Since iron-sulfur clusters easily form upon stochastic encounters between iron ions, hydrosulfide, and small organic molecules possessing a thiolate, including peptides, the likelihood of soluble iron-sulfur clusters seems to be high. What remains challenging to determine is if iron-sulfur peptides participated in early prebiotic chemistry or were recruited later when protocellular membranes evolved that were compatible with the exploitation of electron transfer for the storage of energy as a proton gradient. This problem mirrors in some ways the difficulty in deciphering the origins of metabolism as a whole. Chemistry that resembles some facets of extant metabolism must have transpired on the prebiotic Earth, but there are few clues as to how and when such chemistry was harnessed to support a (proto)cell. Ultimately, unraveling the roles of hemes and iron-sulfur clusters in prebiotic chemistry promises to deepen our understanding of the origins of life on Earth and aids the search for life elsewhere in the universe.
Collapse
Affiliation(s)
- Daniele Rossetto
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AlbertaT6G 2G2, Canada
- D-CIBIO, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - Nemanja Cvjetan
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AlbertaT6G 2G2, Canada
- Department
of Materials, ETH Zürich, Leopold-Ruzicka-Weg 4, Zürich 8093, Switzerland
| | - Peter Walde
- Department
of Materials, ETH Zürich, Leopold-Ruzicka-Weg 4, Zürich 8093, Switzerland
| | - Sheref S. Mansy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AlbertaT6G 2G2, Canada
- D-CIBIO, University of Trento, via Sommarive 9, Trento 38123, Italy
| |
Collapse
|
2
|
Rodriguez LE, Weber JM, Barge LM. Evaluating Pigments as a Biosignature: Abiotic/Prebiotic Synthesis of Pigments and Pigment Mimics in Planetary Environments. ASTROBIOLOGY 2024; 24:767-782. [PMID: 38768415 DOI: 10.1089/ast.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Pigments serve a multitude of functions in biology including light harvesting for photosynthesis, radiation protection, membrane support, and defense. The ubiquity of pigments-especially within extremophiles found in high-radiation, high-salinity, and dry environments-and their detectability via mission-ready techniques have elevated these molecules as promising targets in the search for evidence of life elsewhere. Moreover, the detection of pigments has been proposed as a "smoking gun" for extraterrestrial life as it has been suggested that these molecules cannot be generated abiotically. However, while pigments may hold promise as a biosignature, current understanding of their possible prebiotic origins remains understudied and uncertain. Better understanding of the abiotic synthesis of pigments is critical for evaluating the biogenicity of any pigment detected during missions, including by the Mars Perseverance rover or from returned samples. Compounding this uncertainty is the broad definition of pigment as it includes any compound capable of absorbing visible light and by itself does not specify a particular chemical motif. While not experimentally verified, there are promising prebiotic routes for generating pigments including hemes, chlorophylls, and carotenoids. Herein, we review the biochemistry of pigments, the inherent assumptions made when searching for these molecules in the field, their abiotic synthesis in industry and prebiotic reactions, prebiotically relevant molecules that can mimic their spectral signatures, and implications/recommendations for future work.
Collapse
Affiliation(s)
- Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
3
|
Cvjetan N, Schuler LD, Ishikawa T, Walde P. Optimization and Enhancement of the Peroxidase-like Activity of Hemin in Aqueous Solutions of Sodium Dodecylsulfate. ACS OMEGA 2023; 8:42878-42899. [PMID: 38024761 PMCID: PMC10652838 DOI: 10.1021/acsomega.3c05915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Iron porphyrins play several important roles in present-day living systems and probably already existed in very early life forms. Hemin (= ferric protoporphyrin IX = ferric heme b), for example, is the prosthetic group at the active site of heme peroxidases, catalyzing the oxidation of a number of different types of reducing substrates after hemin is first oxidized by hydrogen peroxide as the oxidizing substrate of the enzyme. The active site of heme peroxidases consists of a hydrophobic pocket in which hemin is embedded noncovalently and kept in place through coordination of the iron atom to a proximal histidine side chain of the protein. It is this partially hydrophobic local environment of the enzyme which determines the efficiency with which the sequential reactions of the oxidizing and reducing substrates proceed at the active site. Free hemin, which has been separated from the protein moiety of heme peroxidases, is known to aggregate in an aqueous solution and exhibits low catalytic activity. Based on previous reports on the use of surfactant micelles to solubilize free hemin in a nonaggregated state, the peroxidase-like activity of hemin in the presence of sodium dodecyl sulfate (SDS) at concentrations below and above the critical concentration for SDS micelle formation (critical micellization concentration (cmc)) was systematically investigated. In most experiments, 3,3',5,5'-tetramethylbenzidine (TMB) was applied as a reducing substrate at pH = 7.2. The presence of SDS clearly had a positive effect on the reaction in terms of initial reaction rate and reaction yield, even at concentrations below the cmc. The highest activity correlated with the cmc value, as demonstrated for reactions at three different HEPES concentrations. The 4-(2-hydroxyethyl)-1-piperazineethanesulfonate salt (HEPES) served as a pH buffer substance and also had an accelerating effect on the reaction. At the cmc, the addition of l-histidine (l-His) resulted in a further concentration-dependent increase in the peroxidase-like activity of hemin until a maximal effect was reached at an optimal l-His concentration, probably corresponding to an ideal mono-l-His ligation to hemin. Some of the results obtained can be understood on the basis of molecular dynamics simulations, which indicated the existence of intermolecular interactions between hemin and HEPES and between hemin and SDS. Preliminary experiments with SDS/dodecanol vesicles at pH = 7.2 showed that in the presence of the vesicles, hemin exhibited similar peroxidase-like activity as in the case of SDS micelles. This supports the hypothesis that micelle- or vesicle-associated ferric or ferrous iron porphyrins may have played a role as primitive catalysts in membranous prebiotic compartment systems before cellular life emerged.
Collapse
Affiliation(s)
- Nemanja Cvjetan
- Department
of Materials, ETH-Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | | | - Takashi Ishikawa
- Department
of Biology and Chemistry, Paul Scherrer Institute and Department of
Biology, ETH-Zürich, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Peter Walde
- Department
of Materials, ETH-Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Abstract
Ferric heme b (= ferric protoporphyrin IX = hemin) is an important prosthetic group of different types of enzymes, including the intensively investigated and widely applied horseradish peroxidase (HRP). In HRP, hemin is present in monomeric form in a hydrophobic pocket containing among other amino acid side chains the two imidazoyl groups of His170 and His42. Both amino acids are important for the peroxidase activity of HRP as an axial ligand of hemin (proximal His170) and as an acid/base catalyst (distal His42). A key feature of the peroxidase mechanism of HRP is the initial formation of compound I under heterolytic cleavage of added hydrogen peroxide as a terminal oxidant. Investigations of free hemin dispersed in aqueous solution showed that different types of hemin dimers can form, depending on the experimental conditions, possibly resulting in hemin crystallization. Although it has been recognized already in the 1970s that hemin aggregation can be prevented in aqueous solution by using micelle-forming amphiphiles, it remains a challenge to prepare hemin-containing micellar and vesicular systems with peroxidase-like activities. Such systems are of interest as cheap HRP-mimicking catalysts for analytical and synthetic applications. Some of the key concepts on which research in this fascinating and interdisciplinary field is based are summarized, along with major accomplishments and possible directions for further improvement. A systematic analysis of the physico-chemical properties of hemin in aqueous micellar solutions and vesicular dispersions must be combined with a reliable evaluation of its catalytic activity. Future studies should show how well the molecular complexity around hemin in HRP can be mimicked by using micelles or vesicles. Because of the importance of heme b in virtually all biological systems and the fact that porphyrins and hemes can be obtained under potentially prebiotic conditions, ideas exist about the possible role of heme-containing micellar and vesicular systems in prebiotic times.
Collapse
|
5
|
Carbon dioxide photoreduction in prebiotic environments. Photochem Photobiol Sci 2022; 21:863-878. [PMID: 35107790 DOI: 10.1007/s43630-021-00168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
The reduction of carbon dioxide is one of the hottest topics due to the concern of global warming. Carbon dioxide reduction is also an essential step for life's origins as photoautotrophs arose soon after Earth formation. Both the topics are of high general interest, and possibly, there could be a fruitful cross-fertilization of the two fields. Herein, we selected and collected papers related to photoreduction of carbon dioxide using compounds easily available on the Earth and considered of prebiotic relevance. This work might be useful also to scientists interested in carbon dioxide photoreduction and/or to have an overview of the techniques available.
Collapse
|
6
|
Kua J, Miller AS, Wallace CE, Loli H. Role of Acid in the Co-oligomerization of Formaldehyde and Pyrrole. ACS OMEGA 2019; 4:22251-22259. [PMID: 31891109 PMCID: PMC6933802 DOI: 10.1021/acsomega.9b03931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Building on previous work (J. Phys. Chem. A 2017, 121, 8154-8166) under neutral conditions, we examined the co-oligomerization of CH2O and pyrrole to form porphryinogen under acidic conditions using density functional theory (B3LYP//6-311G**). Thermodynamically, we found that azafulvene intermediates were significantly stabilized under highly acidic conditions. Kinetically, energy barriers were lowered for C-C bond formation, discriminating in favor of reactions that lead to porphyrinogen. However, it was challenging to satisfactorily combine our thermodynamic and kinetic profiles into a unified free-energy profile because of difficulties in optimizing transition states of cationic species involving proton hops. Instead, we used neutral carboxylic acids as a proxy to study how energy barriers changed. By combining data from both neutral and acidic conditions, we estimate a free-energy profile for the initial steps of oligomerization under milder acidic conditions more relevant to prebiotic chemistry.
Collapse
|
7
|
Pleyer HL, Strasdeit H, Fox S. A Possible Prebiotic Ancestry of Porphyrin-Type Protein Cofactors. ORIGINS LIFE EVOL B 2018; 48:347-371. [PMID: 30547367 DOI: 10.1007/s11084-018-9567-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
In previous experiments that simulated conditions on primordial volcanic islands, we demonstrated the abiotic formation of hydrophobic porphyrins. The present study focused on the question whether such porphyrins can be metalated by prebiotically plausible metal ion sources. We used water-insoluble octaethylporphyrin (H2oep) as a model compound. Experiments were conducted in a nitrogen atmosphere under cyclic wet-dry conditions in order to simulate the fluctuating environment in prebiotic rock pools. Wetting-drying proved to be a crucial factor. Significant yields of the metalloporphyrins (20-78% with respect to H2oep) were obtained from the soluble salts MCl2 (M = Mg, Fe, Co, Ni and Cu) in freshwater. Even almost insoluble minerals and rocks metalated the porphyrin. Basalt (an iron source, 11% yield), synthetic jaipurite (CoS, 33%) and synthetic covellite (CuS, 57%) were most efficient. Basalt, magnetite and FeCl2 gave considerably higher yields in artificial seawater than in freshwater. From iron sources, the highest yields, however, were obtained in an acidic medium (hydrochloric acid with an initial pH of 2.1). Under these conditions, iron meteorites also metalated the porphyrin. Acidic conditions were considered because they are known to occur during eruptions on volcanic islands. Octaethylporphyrinatomagnesium(II) did not form in acidic medium and was unstable towards dissolved Fe2+. It is therefore questionable whether magnesium porphyrins, i.e. possible ancestors of chlorophyll, could have accumulated in primordial rock pools. However, abiotically formed ancestors of the modern cofactors heme (Fe), B12 (Co), and F430 (Ni) may have been available to hypothetical protometabolisms and early organisms.
Collapse
Affiliation(s)
- Hannes Lukas Pleyer
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Henry Strasdeit
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Stefan Fox
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| |
Collapse
|
8
|
Liu R, Liu M, Hood D, Chen CY, MacNevin CJ, Holten D, Lindsey JS. Chlorophyll-Inspired Red-Region Fluorophores: Building Block Synthesis and Studies in Aqueous Media. Molecules 2018; 23:molecules23010130. [PMID: 29320445 PMCID: PMC6017558 DOI: 10.3390/molecules23010130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 02/04/2023] Open
Abstract
Fluorophores that absorb and emit in the red spectral region (600-700 nm) are of great interest in photochemistry and photomedicine. Eight new target chlorins (and 19 new chlorins altogether)-analogues of chlorophyll-of different polarities have been designed and synthesized for various applications; seven of the chlorins are equipped with a bioconjugatable tether. Hydrophobic or amphiphilic chlorins in a non-polar organic solvent (toluene), polar organic solvent (DMF), and aqueous or aqueous micellar media show a sharp emission band in the red region and modest fluorescence quantum yield (Φf = 0.2-0.3). A Poisson analysis implies most micelles are empty and few contain >1 chlorin. Water-soluble chlorins each bearing three PEG (oligoethyleneglycol) groups exhibit narrow emission bands (full-width-at-half maximum <25 nm). The lifetime of the lowest singlet excited state and the corresponding yields and rate constants for depopulation pathways (fluorescence, intersystem crossing, internal conversion) are generally little affected by the PEG groups or dissolution in aqueous or organic media. A set of chlorin-avidin conjugates revealed a 2-fold increase in Φf with increased average chlorin/avidin ratio (2.3-12). In summary, the chlorins of various polarities described herein are well suited as red-emitting fluorophores for applications in aqueous or organic media.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (R.L.); (M.L.)
| | - Mengran Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (R.L.); (M.L.)
| | - Don Hood
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889, USA;
| | - Chih-Yuan Chen
- NIRvana Sciences, Inc., Research Triangle Park, NC 27709, USA; (C.-Y.C.); (C.J.M.)
| | | | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889, USA;
- Correspondence: (D.H.); (J.S.L.); Tel.: +1-314-935-6502 (D.H.); +1-919-515-6406 (J.S.L.)
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (R.L.); (M.L.)
- Correspondence: (D.H.); (J.S.L.); Tel.: +1-314-935-6502 (D.H.); +1-919-515-6406 (J.S.L.)
| |
Collapse
|
9
|
Kua J, Loli H. Porphinogen Formation from the Co-Oligomerization of Formaldehyde and Pyrrole: Free Energy Pathways. J Phys Chem A 2017; 121:8154-8165. [DOI: 10.1021/acs.jpca.7b08685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jeremy Kua
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Helen Loli
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
10
|
Almeida J, Aguiar A, Leite A, Silva AMN, Cunha-Silva L, de Castro B, Rangel M, Barone G, Tomé AC, Silva AMG. 1,3-Dipolar cycloadditions with meso-tetraarylchlorins – site selectivity and mixed bisadducts. Org Chem Front 2017. [DOI: 10.1039/c6qo00771f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mixed bisadducts resulting from the sequential addition of a nitrone and an azomethine ylide to the porphyrin macrocycle were efficiently obtained, in a site selective approach.
Collapse
|
11
|
Deans RM, Taniguchi M, Chandrashaker V, Ptaszek M, Chambers DR, Soares ARM, Lindsey JS. Complexity in structure-directed prebiotic chemistry. Unexpected compositional richness from competing reactants in tetrapyrrole formation. NEW J CHEM 2016. [DOI: 10.1039/c6nj00543h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acyclic reactants afford “partially defective” pyrroles that interfere with chain growth of “normal” pyrroles on the path to tetrapyrrole macrocycles.
Collapse
Affiliation(s)
- Richard M. Deans
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | | | - Marcin Ptaszek
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Dana R. Chambers
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Ana R. M. Soares
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | |
Collapse
|
12
|
Taniguchi M, Deans RM, Chandrashaker V, Ptaszek M, Lindsey JS. Scope and limitations of two model prebiotic routes to tetrapyrrole macrocycles. NEW J CHEM 2016. [DOI: 10.1039/c6nj01423b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aqueous reaction (35 °C, 72 h) of two acyclic compounds, an α-aminoketone + β-ketoester or β-diketone (not shown), affords a pyrrole that self-condenses to give the porphyrinogen.
Collapse
Affiliation(s)
| | - Richard M. Deans
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | - Marcin Ptaszek
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | |
Collapse
|
13
|
Chandrashaker V, Ptaszek M, Taniguchi M, Lindsey JS. Synthesis of diverse acyclic precursors to pyrroles for studies of prebiotic routes to tetrapyrrole macrocycles. NEW J CHEM 2016. [DOI: 10.1039/c6nj02048h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Some 50 ketones, β-diketones, β-ketoesters and α-aminoketones have been prepared for studies of the formation of trisubstituted pyrroles equipped for self-condensation leading to tetrapyrrole macrocycles.
Collapse
Affiliation(s)
| | - Marcin Ptaszek
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | | |
Collapse
|