1
|
Konietzny PB, Freytag J, Feldhof MI, Müller JC, Ohl D, Stehle T, Hartmann L. Synthesis of Homo- and Heteromultivalent Fucosylated and Sialylated Oligosaccharide Conjugates via Preactivated N-Methyloxyamine Precision Macromolecules and Their Binding to Polyomavirus Capsid Proteins. Biomacromolecules 2022; 23:5273-5284. [PMID: 36398945 DOI: 10.1021/acs.biomac.2c01092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycoconjugates are a versatile class of bioactive molecules that have found application as vaccines and antivirals and in cancer therapy. Their synthesis typically involves elaborate functionalization and use of protecting groups on the carbohydrate component in order to ensure efficient and selective conjugation. Alternatively, non-functionalized, non-protected carbohydrates isolated from biological sources or derived through biotechnological methods can be directly conjugated via N-methyloxyamine groups. In this study, we introduce such N-methyloxyamine groups into a variety of multivalent scaffolds─from small to oligomeric to polymeric scaffolds─making use of solid-phase polymer synthesis to assemble monodisperse sequence-defined macromolecules. These scaffolds are then successfully functionalized with different types of human milk oligosaccharides deriving a library of homo- and heteromultivalent glycoconjugates. Glycomacromolecules presenting oligosaccharide side chains with either α2,3- or α2,6-linked terminal sialic acid are used in a binding study with two types of polyomavirus capsid proteins showing that the multivalent presentation through the N-methyloxyamine-derived scaffolds increases the number of contacts with the protein. Overall, a straightforward route to derive glycoconjugates from complex oligosaccharides with high variability yet control in the multivalent scaffold is presented, and applicability of the derived structures is demonstrated.
Collapse
Affiliation(s)
- Patrick B Konietzny
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Jasmin Freytag
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Melina I Feldhof
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Joshua C Müller
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Daniel Ohl
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
2
|
Sagini MN, Klika KD, Hotz-Wagenblatt A, Zepp M, Berger MR. Lactosyl-sepharose binding proteins from pancreatic cancer cells show differential expression in primary and metastatic organs. Exp Biol Med (Maywood) 2020; 245:631-643. [PMID: 32131629 DOI: 10.1177/1535370220910691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In normal cells, glycan binding proteins mediate various cellular processes upon recognition and binding to respective ligands. In tumor cells, these proteins have been associated with metastasis. Lactosyl-sepharose binding proteins (LSBPs) were isolated and identified in a workflow involving lactosyl affinity chromatography and label-free quantification mass spectrometry (LFQ MS). A binding study with monosaccharides was performed by microscale thermophoresis and nuclear magnetic resonance spectroscopy. Influence of galactose on LSBPs’ binding to the lactosyl resin was investigated by competitive affinity chromatography followed by LFQ MS. An analysis of amino acids with sugar binding motifs was searched using bioinformatics tools. The expression profiles of these proteins at the mRNA level, as determined by a chip array from a pancreatic ductal adenocarcinoma (PDAC) liver metastasis model, were used for evaluating their potential role in cancer progression. Proteomics data and their respective genes were analyzed by MaxQuant and Ingenuity Pathway Analysis. In total, 1295 LSBPs were isolated and identified from Suit2-007 human pancreatic adenocarcinoma cells. Interaction studies revealed that these proteins exhibit low to moderate affinity for monosaccharide sugars. Some of these LSBPs even showed reduced affinity after calcium depletion. Among the isolated proteins were annexins and galectins in addition to other families, with no history of binding lactosyl residues. A subset of LSBPs exhibited differential profiles in the pancreas, liver, and lung environments. These modulations may be related to tumor progression. In conclusion, we show that PDAC cells contain LSBPs, a subset of which binds galactose with calcium dependency. The differential expression of these proteins in a rat model highlights their value for diagnosis and as potential drug targets for PDAC therapy. Future work will be required to validate these findings in patient samples.Impact statementInteraction of glycan binding proteins with aberrantly expressed glycans in tumor environment is crucial for metastasis. Here, we established a work flow for investigating the presence of a subset of these proteins in PDAC cells, which bind to a lactosyl-sepharose resin. The resin had been designed to isolate proteins with lectin-like properties. The corresponding lactosyl-sepharose binding proteins (LSBPs) show affinity for galactose and other monosaccharides. A subset of the LSBPs shows also calcium dependency. The importance of these proteins is highlighted by their differential expression profiles in PDAC cells growing in primary (pancreas) and metastatic (liver and lung) organ sites. Based on their affinity for the lactosyl-resin and monosaccharides, LSBPs hold potential for PDAC diagnosis and as drug targets. This work has set the stage for further investigation of the occurrence and the role of LSBPs in patient samples using the newly established workflow.
Collapse
Affiliation(s)
- Micah N Sagini
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Genomics and Proteomics Core Facility, Bioinformatics-Husar Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Pawar SV, Upadhyay PK, Burade S, Kumbhar N, Patil R, Dhavale DD. Synthesis and anti-leishmanial activity of TRIS-glycine-β-alanine dipeptidic triazole dendron coated with nonameric mannoside glycocluster. Carbohydr Res 2019; 485:107815. [DOI: 10.1016/j.carres.2019.107815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
|
4
|
Burade SS, Pawar SV, Saha T, Kumbhar N, Kotmale AS, Ahmad M, Talukdar P, Dhavale DD. Sugar-derived oxazolone pseudotetrapeptide as γ-turn inducer and anion-selective transporter. Beilstein J Org Chem 2019; 15:2419-2427. [PMID: 31666876 PMCID: PMC6808195 DOI: 10.3762/bjoc.15.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/23/2019] [Indexed: 12/02/2022] Open
Abstract
The intramolecular cyclization of a C-3-tetrasubstituted furanoid sugar amino acid-derived linear tetrapeptide afforded an oxazolone pseudo-peptide with the formation of an oxazole ring at the C-terminus. A conformational study of the oxazolone pseudo-peptide showed intramolecular C=O···HN(II) hydrogen bonding in a seven-membered ring leading to a γ-turn conformation. This fact was supported by a solution-state NMR and molecular modeling studies. The oxazolone pseudotetrapeptide was found to be a better Cl--selective transporter for which an anion-anion antiport mechanism was established.
Collapse
Affiliation(s)
- Sachin S Burade
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| | - Sushil V Pawar
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| | - Tanmoy Saha
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Navanath Kumbhar
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| | - Amol S Kotmale
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| | - Manzoor Ahmad
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Pinaki Talukdar
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Dilip D Dhavale
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| |
Collapse
|
5
|
Simon M, Ali LMA, El Cheikh K, Aguesseau J, Gary-Bobo M, Garcia M, Morère A, Maillard LT. Can Heterocyclic γ-Peptides Provide Polyfunctional Platforms for Synthetic Glycocluster Construction? Chemistry 2018; 24:11426-11432. [PMID: 29846978 DOI: 10.1002/chem.201802032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 01/03/2023]
Abstract
Sugars play key roles in many molecular and cellular communication processes involving a family of proteins named lectins. The low affinity associated with sugar recognition is generally counterbalanced by the multivalent nature of the interaction. While many polyglycosylated architectures have been described, only a few studies focused on the impact of topology variations of the multivalent structures on the interaction with lectin proteins. One major interest of our group concerns the design of new highly predictable and stable molecular pseudo-peptide architectures for therapeutic applications. In such a context, we described a class of constrained heterocyclic γ-amino acids built around a thiazole ring, named ATCs. ATC oligomers are helical molecules resulting from the formation of a highly stable C9 hydrogen-bonding pattern. Following our program, we herein address the potential of ATC oligomers as tunable scaffolds for the development of original multivalent glycoclusters.
Collapse
Affiliation(s)
- Matthieu Simon
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France.,On sabbatical leave from: Medical Research Institute, Alexandria University, Egypt
| | - Khaled El Cheikh
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Julie Aguesseau
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Alain Morère
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Ludovic T Maillard
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| |
Collapse
|
6
|
Juanes M, Lostalé-Seijo I, Granja JR, Montenegro J. Supramolecular Recognition and Selective Protein Uptake by Peptide Hybrids. Chemistry 2018; 24:10689-10698. [DOI: 10.1002/chem.201800706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/19/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Marisa Juanes
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
7
|
Pifferi C, Daskhan GC, Fiore M, Shiao TC, Roy R, Renaudet O. Aminooxylated Carbohydrates: Synthesis and Applications. Chem Rev 2017; 117:9839-9873. [PMID: 28682060 DOI: 10.1021/acs.chemrev.6b00733] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among other classes of biomolecules, carbohydrates and glycoconjugates are widely involved in numerous biological functions. In addition to addressing the related synthetic challenges, glycochemists have invested intense efforts in providing access to structures that can be used to study, activate, or inhibit these biological processes. Over the past few decades, aminooxylated carbohydrates have been found to be key building blocks for achieving these goals. This review provides the first in-depth overview covering several aspects related to the syntheses and applications of aminooxylated carbohydrates. After a brief introduction to oxime bonds and their relative stabilities compared to related C═N functions, synthetic aspects of oxime ligation and methodologies for introducing the aminooxy functionality onto both glycofuranosyls and glycopyranosyls are described. The subsequent section focuses on biological applications involving aminooxylated carbohydrates as components for the construcion of diverse architectures. Mimetics of natural structures represent useful tools for better understanding the features that drive carbohydrate-receptor interaction, their biological output and they also represent interesting structures with improved stability and tunable properties. In the next section, multivalent structures such as glycoclusters and glycodendrimers obtained through oxime ligation are described in terms of synthetic design and their biological applications such as immunomodulators. The second-to-last section discusses miscellaneous applications of oxime-based glycoconjugates, such as enantioselective catalysis and glycosylated oligonucleotides, and conclusions and perspectives are provided in the last section.
Collapse
Affiliation(s)
- Carlo Pifferi
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Gour Chand Daskhan
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Michele Fiore
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Tze Chieh Shiao
- Pharmaqam, Department of Chemistry, Université du Québec à Montreal , P.O. Box 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - René Roy
- Pharmaqam, Department of Chemistry, Université du Québec à Montreal , P.O. Box 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Olivier Renaudet
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France.,Institut Universitaire de France , 103 Boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
8
|
Burade SS, Shinde SV, Bhuma N, Kumbhar N, Kotmale A, Rajamohanan PR, Gonnade RG, Talukdar P, Dhavale DD. Acyclic αγα-Tripeptides with Fluorinated- and Nonfluorinated-Furanoid Sugar Framework: Importance of Fluoro Substituent in Reverse-Turn Induced Self-Assembly and Transmembrane Ion-Transport Activity. J Org Chem 2017; 82:5826-5834. [PMID: 28485150 DOI: 10.1021/acs.joc.7b00661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acyclic αγα-tripeptides derived from fluorinated-furanoid sugar amino acid frameworks act as reverse-turn inducers with a U-shaped conformation, whereas the corresponding nonfluorinated αγα-tripeptides show random peptide conformations. The NMR studies showed the presence of bifurcated weak intramolecular hydrogen bonding (F···HN) and N+···Fδ- charge-dipole attraction compel the amide carbonyl groups to orient antiperiplanar to the C-F bond, thus, demonstrating the role of the fluorine substituent in stabilizing the U-shaped conformation. The NOESY data indicate that the U-shaped tripeptides self-assembly formation is stabilized by the intermolecular hydrogen bonding between C═O···HN with antiparallel orientation. This fact is supported by ESI-MS data, which showed mass peaks up to the pentameric self-assembly, even in the gas phase. The morphological analysis by FE-SEM, on solid samples, showed arrangement of fibers into nanorods. The antiparallel self-assembled pore of the fluorinated tripeptides illustrates the selective ion-transport activity. The experimental findings were supported by DFT studies.
Collapse
Affiliation(s)
- Sachin S Burade
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly Pune University) , Pune 411007, India
| | - Sopan Valiba Shinde
- Indian Institute of Science Education and Research (IISER) , Pune 411008, India
| | - Naresh Bhuma
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly Pune University) , Pune 411007, India
| | - Navanath Kumbhar
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly Pune University) , Pune 411007, India
| | | | | | | | - Pinaki Talukdar
- Indian Institute of Science Education and Research (IISER) , Pune 411008, India
| | - Dilip D Dhavale
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly Pune University) , Pune 411007, India
| |
Collapse
|
9
|
Sunkari YK, Alam F, Kandiyal PS, Aloysius S, Ampapathi RS, Chakraborty TK. Influence of Linker Length on Conformational Preferences of Glycosylated Sugar Amino Acid Foldamers. Chembiochem 2016; 17:1839-1844. [DOI: 10.1002/cbic.201600386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Yashoda Krishna Sunkari
- Department of Organic Chemistry; Indian Institute of Science, CV Raman Road; Bengaluru 560012 India
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Faiyaz Alam
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Pancham Singh Kandiyal
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Siriwardena Aloysius
- Laboratoire des Glucides (UMR 6912); CNRS-FRE-3517; Universit de Picardie Jules Verne, 33, Rue St Leu, Faculte des Sciences; Amiens 80039 France
| | - Ravi Sankar Ampapathi
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Tushar Kanti Chakraborty
- Department of Organic Chemistry; Indian Institute of Science, CV Raman Road; Bengaluru 560012 India
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| |
Collapse
|
10
|
Abstract
The synthesis and chemical and physicochemical properties as well as biological and medical applications of various hydroxylamine-functionalized carbohydrate derivatives are summarized.
Collapse
Affiliation(s)
- N. Chen
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| | - J. Xie
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| |
Collapse
|