1
|
S V, Das AK, Bylappa Y, Nag A, Dolai M. A dual-functional rhodamine B and azo-salicylaldehyde derivative for the simultaneous detection of copper and hypochlorite: synthesis, biological applications and theoretical insights. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8164-8178. [PMID: 39508779 DOI: 10.1039/d4ay01758g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A multifunctional rhodamine derivative containing azo-salicylaldehyde (BBS) was designed and synthesized as a colorimetric and fluorescence turn-on probe for the selective detection of copper cations (Cu2+) and hypochlorite anions (OCl-) in aqueous media. In the presence of Cu2+, the probe BBS exhibited turn-on absorption and fluorescence change at 554 nm and 585 nm, respectively. The binding mechanism of BBS with Cu2+ induces the opening of a spirolactam ring in the rhodamine moiety by the formation of a metal-ligand complex, achieving 10-fold enhancement in fluorescence and quantum yield, along with a binding constant of 1 × 104 M-1 and a detection limit of 2.61 μM. Addition of OCl- enhanced the absorbance and fluorescence intensities at 520 nm and 575 nm, respectively. The probe BBS underwent hypochlorite-mediated oxidation, followed by hydrolysis, resulting in the formation of rhodamine B itself, which is detectable by the naked eye via the color and fluorescence enhancement by 11-fold with a high quantum yield and a detection limit of 1.96 μM. For practical applications, sensor BBS can be used to detect Cu2+ in water samples and on cotton swabs. For biological applications, the interaction of the BBS-Cu(II) complex with transport proteins such as bovine serum albumin (BSA) and ct-DNA was investigated through UV-vis and fluorescence titration experiments. Additionally, the structural optimization of BBS and the BBS-Cu(II) complex was demonstrated using DFT, and the interactions of the BBS-Cu(II) complex with BSA and ct-DNA were analysed through theoretical docking studies. Bioimaging studies were conducted by capturing fluorescence images of BBS with Cu2+ and OCl- in a physiological medium containing living plant tissue using green gram seeds.
Collapse
Affiliation(s)
- Vishnu S
- Department of Chemistry, Christ University, Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Avijit Kumar Das
- Department of Chemistry, Christ University, Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Yatheesharadhya Bylappa
- Department of Life Science, Christ University, Hosur Road, Bangalore, Karnataka, India, 560029
| | - Anish Nag
- Department of Life Science, Christ University, Hosur Road, Bangalore, Karnataka, India, 560029
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721404, WB, India
| |
Collapse
|
2
|
Zhao L, Shi J, Liu Y, Han M, Li S, Cao D. Novel benzothiazole-based fluorescent probe for efficient detection of Cu 2+/S 2- and Zn 2+ and its applicability in cell imaging. Anal Chim Acta 2024; 1324:343093. [PMID: 39218575 DOI: 10.1016/j.aca.2024.343093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND In recent years, environmental pollution has been increasing due to the excessive emission of toxic ions, which has caused serious harm to human health and ecological environment. There are various methods for detecting Cu2+, S2- and Zn2+, but the traditional ion detection methods have obvious disadvantages, such as poor selectivity and long detection time. Therefore, it is still crucial to develop simple, efficient and rapid detection methods. RESULTS A fluorescent probe based on benzothiazole, (E)-N'-(3-(benzo[d]thiazol-2-yl)-2-hydroxy-5-methylbenzylidene)-3,4,5-tris(benzyloxy)benzohydrazide (BT), was designed and synthesized. It was characterized using ESI-MS, 1H NMR, and 13C NMR. BT can be used as a chemosensor to detect Cu2+, S2- and Zn2+ in CH3CN/H2O (7:3, v/v, pH = 7.4, HEPES buffer: 0.1 M), with detection limits of 0.301 μM, 0.017 μM, and 0.535 μM, respectively. At an excitation wavelength of 320 nm, BT exhibits an "on-off-on" response to Cu2+/S2- and enhanced fluorescence response to Zn2+, with a change in fluorescence color from orange to green. The coordination ratio of ions to the probe was determined to be 1:1 through Job's plot and hydrogen spectral titration. The recognition mechanism was discussed in conjunction with theoretical calculations. Furthermore, the probe has been successfully used in test strips and medical swabs colorimetry, as well as live cell imaging. SIGNIFICANCE The probe BT lays the foundation for the design and synthesis of multifunctional fluorescent probes. As a portable detection method, probe BT was used to detect Cu2+, S2- and Zn2+ on strips. Furthermore, the probe was applied to biological cells to detect target ions with low cytotoxicity and excellent cell permeability. This indicating that it can be used as a potential candidate for tracking Cu2+ and S2- in clinical diagnostics and biological systems.
Collapse
Affiliation(s)
- Linxiu Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, China
| | - Junli Shi
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Yongzheng Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, China
| | - Mingfeng Han
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, China
| | - Shengling Li
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, China.
| | - Duanlin Cao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, China.
| |
Collapse
|
3
|
Chen X, Wang M, Zhang X, Fan X. Rh(III)-Catalyzed Cascade Reactions of Sulfoxonium Ylides with α-Diazocarbonyl Compounds: An Access to Highly Functionalized Naphthalenones. Org Lett 2019; 21:2541-2545. [DOI: 10.1021/acs.orglett.9b00340] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xi Chen
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Muhua Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
4
|
Feng T, He Y, Zhang X, Fan X. Synthesis of Functionalized Cyclobutane‐Fused Naphthalene Derivatives via Cascade Reactions of Allenynes with
tert
‐Butyl Nitrite. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801439] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tian Feng
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of EnvironmentHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| | - Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of EnvironmentHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of EnvironmentHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of EnvironmentHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
5
|
Kang JH, Yang M, Yun D, Kim M, Lee H, Kim KT, Lim MH, Kim C. A dual-response sensor based on NBD for the highly selective determination of sulfide in living cells and zebrafish. NEW J CHEM 2019. [DOI: 10.1039/c8nj06352d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A dual chemosensor, 1-NO2, showing fluorogenic and colorimetric responses was developed for the detection of sulfide in vitro and in vivo.
Collapse
Affiliation(s)
- Ji Hye Kang
- Department of Fine Chem
- Seoul National Univ. of Sci. and Tech
- Seoul
- Korea
| | - Minuk Yang
- Department of Fine Chem
- Seoul National Univ. of Sci. and Tech
- Seoul
- Korea
| | - Dongju Yun
- Department of Fine Chem
- Seoul National Univ. of Sci. and Tech
- Seoul
- Korea
| | - Mingeun Kim
- Department of Chemistry
- Korea Advanced Institute of Sci. and Tech. (KAIST)
- Daejeon 34141
- Korea
- Department of Chemistry
| | - Hyojin Lee
- Department of Environmental Engineering
- Seoul National Univ. of Sci. and Tech
- Seoul 01188
- Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering
- Seoul National Univ. of Sci. and Tech
- Seoul 01188
- Korea
| | - Mi Hee Lim
- Department of Chemistry
- Korea Advanced Institute of Sci. and Tech. (KAIST)
- Daejeon 34141
- Korea
| | - Cheal Kim
- Department of Fine Chem
- Seoul National Univ. of Sci. and Tech
- Seoul
- Korea
| |
Collapse
|
6
|
Kaushik R, Sakla R, Ghosh A, Selvan G, Selvakumar PM, Jose DA. Selective Detection of H 2S by Copper Complex Embedded in Vesicles through Metal Indicator Displacement Approach. ACS Sens 2018; 3:1142-1148. [PMID: 29856208 DOI: 10.1021/acssensors.8b00174] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A new approach for the detection of hydrogen sulfide (H2S) was constructed within vesicles comprising phospholipids and amphiphilic copper complex as receptor. 1,2-Distearoyl- sn-glycero-3-phosphocholine (DSPC) vesicles with embedded metal complex receptor (1.Cu) sites have been prepared. The vesicles selectively respond to H2S in a buffered solution and show colorimetric as well as spectral transformation. Other analytes such as reactive sulfur species, reactive nitrogen species, biological phosphates, and other anions failed to induce changes. The H2S detection is established through a metal indicator displacement (MIDA) process, where Eosin-Y (EY) was employed as an indicator. Fluorescence, UV-vis spectroscopy, and the naked eye as the signal readout studies confirm the high selectivity, sensitivity, and lower detection limit of the vesicular receptor. The application of vesicular receptors for real sample analysis was also confirmed by fluorescence live cell imaging.
Collapse
Affiliation(s)
- Rahul Kaushik
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Rahul Sakla
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Amrita Ghosh
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - G.Tamil Selvan
- Department of Science & Humanities, Karunya Institute of Technology & Sciences, Coimbatore 641114, Tamil Nadu, India
| | - P. Mosae Selvakumar
- Department of Science & Humanities, Karunya Institute of Technology & Sciences, Coimbatore 641114, Tamil Nadu, India
| | - D. Amilan Jose
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| |
Collapse
|
7
|
Shang X, Li J, Feng Y, Chen H, Guo W, Zhang J, Wang T, Xu X. Low-Cytotoxicity Fluorescent Probes Based on Anthracene Derivatives for Hydrogen Sulfide Detection. Front Chem 2018; 6:202. [PMID: 29988478 PMCID: PMC6024568 DOI: 10.3389/fchem.2018.00202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023] Open
Abstract
Owing to the role of H2S in various biochemical processes and diseases, its accurate detection is a major research goal. Three artificial fluorescent probes based on 9-anthracenecarboxaldehyde derivatives were designed and synthesized. Their anion binding capacity was assessed by UV-Vis titration, fluorescence spectroscopy, HRMS, 1HNMR titration, and theoretical investigations. Although the anion-binding ability of compound 1 was insignificant, two compounds 2 and 3, containing benzene rings, were highly sensitive fluorescent probes for HS− among the various anions studied (HS−, F−, Cl−, Br−, I−, AcO−, H2PO4-, SO32-, Cys, GSH, and Hcy). This may be explained by the nucleophilic reaction between HS− and the electron-poor C=C double bond. Due to the presence of a nitro group, compound 3, with a nitrobenzene ring, showed stronger anion binding ability than that of compound 2. In addition, compound 1 had a proliferative effect on cells, and compounds 2 and 3 showed low cytotoxicity against MCF-7 cells in the concentration range of 0–150 μg·mL−1. Thus, compounds 2 and 3 can be used as biosensors for the detection of H2S in vivo and may be valuable for future applications.
Collapse
Affiliation(s)
- Xuefang Shang
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Li
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yaqian Feng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Hongli Chen
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Wei Guo
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jinlian Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Department of Biochemistry, Xinxiang Medical University, Xinxiang, China
| | - Xiufang Xu
- Department of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Kang JH, Chae JB, Kim C. A multi-functional chemosensor for highly selective ratiometric fluorescent detection of silver(I) ion and dual turn-on fluorescent and colorimetric detection of sulfide. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180293. [PMID: 30110410 PMCID: PMC6030272 DOI: 10.1098/rsos.180293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
A multi-functional chemosensor 1 as silver and sulfide detector was synthesized by the combination of octopamine and 4-dimethylaminocinnamaldehyde. Sensor 1 exhibited a ratiometric fluorescence emission for Ag+ from blue to sky. The binding mode of 1 and Ag+ turned out to be a 1 : 1 ratio as determined using Job plot and electrospray ionization (ESI) mass spectral analyses. The sensing mechanism of 1 with silver ion was unravelled by 1H NMR titrations and theoretical calculations. Sensor 1 also discerned sulfide by enhancing fluorescence intensity and changing colour from yellow to colourless in aqueous solution. The sensing properties of 1 toward S2- were investigated by using ESI-mass analysis, Job plot and 1H NMR titrations. Moreover, 1 could be used as a detector for sulfide in a wide pH range.
Collapse
Affiliation(s)
| | | | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 139-741, Korea
| |
Collapse
|
9
|
Jeong HY, Lee SY, Han J, Lim MH, Kim C. Thiophene and diethylaminophenol-based “turn-on” fluorescence chemosensor for detection of Al 3+ and F − in a near-perfect aqueous solution. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Lee JJ, Kim YS, Nam E, Lee SY, Lim MH, Kim C. A PET-based fluorometric chemosensor for the determination of mercury(II) and pH, and hydrolysis reaction-based colorimetric detection of hydrogen sulfide. Dalton Trans 2016; 45:5700-12. [PMID: 26928649 DOI: 10.1039/c6dt00147e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A simple fluorescent chemosensor 1 for the detection of Hg(2+) and pH was developed by a combination of 2-aminoethyl piperazine and 4-chloro-7-nitrobenz-2-oxa-1,3-diazole. The sensor 1 showed OFF-ON behavior for different colors of fluorescence in the presence of Hg(2+) and under acidic conditions, respectively, in a near-perfect aqueous solution. The turn-on fluorescence caused by inhibition of photoinduced electron transfer was explained by theoretical calculations. 1 could be used to quantify Hg(2+) in water samples, and its in vitro studies with HeLa cells showed fluorescence in the presence of Hg(2+). In addition, 1 could selectively detect S(2-) by changing its color from orange to pink in a near-perfect aqueous solution. Moreover, 1 could be used as a practical, visible test kit for S(2-).
Collapse
Affiliation(s)
- Jae Jun Lee
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
11
|
Lee SY, Kim C. A colorimetric chemosensor for sulfide in a near-perfect aqueous solution: practical application using a test kit. RSC Adv 2016. [DOI: 10.1039/c6ra19599g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A selective chemosensor with practical applications was developed for the colorimetric detection of S2− in a near-perfect aqueous solution.
Collapse
Affiliation(s)
- Seong Youl Lee
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| | - Cheal Kim
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| |
Collapse
|