1
|
Tunca Arın TA, Sedlacek O. Stimuli-Responsive Polymers for Advanced 19F Magnetic Resonance Imaging: From Chemical Design to Biomedical Applications. Biomacromolecules 2024; 25:5630-5649. [PMID: 39151065 PMCID: PMC11388145 DOI: 10.1021/acs.biomac.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/18/2024]
Abstract
Fluorine magnetic resonance imaging (19F MRI) is a rapidly evolving research area with a high potential to advance the field of clinical diagnostics. In this review, we provide an overview of the recent progress in the field of fluorinated stimuli-responsive polymers applied as 19F MRI tracers. These polymers respond to internal or external stimuli (e.g., temperature, pH, oxidative stress, and specific molecules) by altering their physicochemical properties, such as self-assembly, drug release, and polymer degradation. Incorporating noninvasive 19F labels enables us to track the biodistribution of such polymers. Furthermore, by triggering polymer transformation, we can induce changes in 19F MRI signals, including attenuation, amplification, and chemical shift changes, to monitor alterations in the environment of the tracer. Ultimately, this review highlights the emerging potential of stimuli-responsive fluoropolymer 19F MRI tracers in the current context of polymer diagnostics research.
Collapse
Affiliation(s)
- Tuba Ayça Tunca Arın
- Department of Physical and
Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic
| | - Ondrej Sedlacek
- Department of Physical and
Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic
| |
Collapse
|
2
|
Zhang Z, Chen K, Ameduri B, Chen M. Fluoropolymer Nanoparticles Synthesized via Reversible-Deactivation Radical Polymerizations and Their Applications. Chem Rev 2023; 123:12431-12470. [PMID: 37906708 DOI: 10.1021/acs.chemrev.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.
Collapse
Affiliation(s)
- Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Bruno Ameduri
- Institute Charles Gerhardt of Montpellier (ICGM), CNRS, University of Montpellier, ENSCM, Montpellier 34296, France
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Zhou M, Li L, Xie W, He Z, Li J. Synthesis of a Thermal-Responsive Dual-Modal Supramolecular Probe for Magnetic Resonance Imaging and Fluorescence Imaging. Macromol Rapid Commun 2021; 42:e2100248. [PMID: 34272782 DOI: 10.1002/marc.202100248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/06/2021] [Indexed: 11/05/2022]
Abstract
Dual-modal imaging can integrate the advantages of different imaging technologies, which could improve the accuracy and efficiency of clinical diagnosis. Herein, a novel amphiphilic thermal-responsive copolymer obtained from three types of monomers, N-isopropyl acrylamide, 2-(acetoacetoxy) ethyl methacrylate, and propargyl methacrylate, by RAFT copolymerization, is reported. It can be grafted with β-cyclodextrin and aggregation-induced emission (AIE) luminogens tetraphenylethylene by click chemistry and Biginelli reaction. The multifunctional supramolecular polymer (P4) can be constructed by host-guest inclusion between the copolymer and the Gd-based contrast agent (CA) modified by adamantane [Ad-(DOTA-Gd)]. And it can form vesicles with a bilayer structure in aqueous which will enhance the AIE and magnetic resonance imaging effects. As fluorescent thermometer, P4 can enter HeLa cells for intracellular fluorescence imaging (FI) and is sensitive to temperature with detection limit value of 1.5 °C. As magnetic resonance CA, P4 exhibits higher relaxation compared to Magnevist, which can prolong the circulation time in vivo. In addition, Gd3+ in the polymer can be quickly released from the body by disassembly that reduced the biological toxicity. This work introduces new synthetic ideas for dual-modal probe, which has great potential for clinical diagnostic applications in bioimaging.
Collapse
Affiliation(s)
- Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Li Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zejian He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jie Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
4
|
Zheng L, Luo Y, Chen K, Zhang Z, Chen G. Highly Branched Gradient Glycopolymer: Enzyme-Assisted Synthesis and Enhanced Bacteria-Binding Ability. Biomacromolecules 2020; 21:5233-5240. [DOI: 10.1021/acs.biomac.0c01311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lifang Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Yan Luo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Kui Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Zexin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
5
|
Liu Y, Song L, Feng N, Jiang W, Jin Y, Li X. Recent advances in the synthesis of biodegradable polyesters by sustainable polymerization: lipase-catalyzed polymerization. RSC Adv 2020; 10:36230-36240. [PMID: 35517080 PMCID: PMC9056969 DOI: 10.1039/d0ra07138b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, enzymatic polymerization has dramatically developed and gradually broadened as a creative methodology in the construction of polymeric materials with tailor-made structures and properties. Compared with transition metal catalyst polymerizations, enzymatic polymerization is more attractive in the biomedicine field due to the metal-free residue, good biocompatibility, and few by-products. Meanwhile, enzymatic polymerization has far more activity towards macrolides. In this review, the synthesis of lipase-catalyzed polymer materials is systematically summarized, focusing on the synthesis of the complex and well-defined polymers. The enzymatic polyester synthesis was then discussed concerning the different reaction types, including ring-opening polymerization, polycondensation, a combination of ring-opening polymerization with polycondensation, and chemoenzymatic polymerization. Besides, exploration of novel biocatalysts and reaction media was also described, with particular emphasis on the enzymes obtained via immobilization or protein engineering strategies, green solvents, and reactors. Finally, recent developments in catalytic kinetics and mechanistic studies through the use of spectroscopy, mathematics, and computer techniques have been introduced. Besides, we addressed the remaining central issues in enzymatic polymerization and discussed current studies aimed at providing answers.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry, Jilin University No. 2699, Qianjin Road Changchun Jilin 130012 PR China
| | - Lijie Song
- First Clinical Hospital, Jilin Province Academy of Traditional Chinese Medicine Changchun 130021 China
| | - Na Feng
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences Zhengzhou Henan 450052 China
| | - Wei Jiang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences Zhengzhou Henan 450052 China
| | - Yongri Jin
- College of Chemistry, Jilin University No. 2699, Qianjin Road Changchun Jilin 130012 PR China
| | - Xuwen Li
- College of Chemistry, Jilin University No. 2699, Qianjin Road Changchun Jilin 130012 PR China
| |
Collapse
|
6
|
|
7
|
Kolouchova K, Jirak D, Groborz O, Sedlacek O, Ziolkowska N, Vit M, Sticova E, Galisova A, Svec P, Trousil J, Hajek M, Hruby M. Implant-forming polymeric 19F MRI-tracer with tunable dissolution. J Control Release 2020; 327:50-60. [PMID: 32730953 DOI: 10.1016/j.jconrel.2020.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022]
Abstract
Magnetic resonance imaging (MRI) using 19F-based tracers has emerged as a promising multi-purpose noninvasive diagnostic tool and its application requires the use of various 19F-based tracers for the intended diagnostic purpose. In this study, we report a series of double-stimuli-responsive polymers for use as injectable implants, which were designed to form implants under physiological conditions, and to subsequently dissolve with different dissolution rates (t1/2 ranges from 30 to more than 250 days). Our polymers contain a high concentration of fluorine atoms, providing remarkable signal detectability, and both a hydrophilic monomer and a pH-responsive monomer that alter the biodistribution properties of the implant. The implant location and dissolution were observed using 19F MRI, which allows the anatomic extent of the implant to be monitored. The dissolution kinetics and biocompatibility of these materials were thoroughly analyzed. No sign of toxicity in vitro or in vivo or pathology in vivo was observed, even in chronic administration. The clinical applicability of our polymers was further confirmed via imaging of a rat model by employing an instrument currently used in human medicine.
Collapse
Affiliation(s)
- Kristyna Kolouchova
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 00, Czech Republic
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic; Department of Science and Research, Faculty of Health Studies, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic.
| | - Ondrej Groborz
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic; Department of Organic Chemistry, Charles University, Faculty of Science, Hlavova 8, 128 43 Prague 2, Czech Republic; Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2, Czech Republic; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo square 542/2, 162 06 Prague 6, Czech Republic
| | - Ondrej Sedlacek
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Natalia Ziolkowska
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic; Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Martin Vit
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic; Technical University of Liberec, Faculty of Mechatronics Informatics and Interdisciplinary Studies, Studentska 1402/2, 461 17 Liberec, Czech Republic
| | - Eva Sticova
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Andrea Galisova
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Pavel Svec
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 00, Czech Republic
| | - Jiri Trousil
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Milan Hajek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
8
|
Stereoselectivity-tailored chemo-enzymatic synthesis of enantiocomplementary poly (ω-substituted-δ-valerolactone) enabled by engineered lipase. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Fu C, Tang J, Pye A, Liu T, Zhang C, Tan X, Han F, Peng H, Whittaker AK. Fluorinated Glycopolymers as Reduction-responsive 19F MRI Agents for Targeted Imaging of Cancer. Biomacromolecules 2019; 20:2043-2050. [PMID: 30995836 DOI: 10.1021/acs.biomac.9b00241] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging agents that can be targeted to specific diseases and respond to the microenvironment of the diseased tissue are of considerable interest due to their potential in diagnosing and managing diseases. Here we report a new class of branched fluorinated glycopolymers as 19F MRI contrast agents that respond to a reductive environment, for targeted imaging of cancer. The fluorinated glycopolymers can be readily prepared by a one-pot RAFT polymerization of glucose- and fluorine-containing monomers in the presence of a disulfide-containing cross-linking monomer. The incorporation of glucose units along the polymer chain enables these fluorinated glycopolymers to effectively target cancer cells due to interactions with the overexpressed sugar transporters present on the cell surface. In addition, the polymers exhibit an enhanced 19F MRI signal in response to a reductive environment, one of the unique hallmarks of many cancer cells, demonstrating their potential as promising candidates for targeted imaging of cancer.
Collapse
Affiliation(s)
- Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Joyce Tang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Aidan Pye
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute , PO Royal Brisbane Hospital , Brisbane , Queensland 4029 , Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
10
|
Dong Y, Du P, Pei M, Liu P. Design, postpolymerization conjugation and self-assembly of a di-block copolymer-based prodrug for tumor intracellular acid-triggered DOX release. J Mater Chem B 2019; 7:5640-5647. [DOI: 10.1039/c9tb01511f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel di-block copolymer-based prodrug was designed by atom transfer radical polymerization (ATRP) of glycidyl methacrylate (GMA) with a polyethylene glycol-based initiator (PEG-Br), postpolymerization aldehyde-modification, and doxorubicin (DOX) conjugation via an acid-labile imine bond.
Collapse
Affiliation(s)
- Yuman Dong
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Pengcheng Du
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Mingliang Pei
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
11
|
Fu C, Zhang C, Peng H, Han F, Baker C, Wu Y, Ta H, Whittaker AK. Enhanced Performance of Polymeric 19F MRI Contrast Agents through Incorporation of Highly Water-Soluble Monomer MSEA. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01190] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Zhao J, Lu M, Lai H, Lu H, Lalevée J, Barner-Kowollik C, Stenzel MH, Xiao P. Delivery of Amonafide from Fructose-Coated Nanodiamonds by Oxime Ligation for the Treatment of Human Breast Cancer. Biomacromolecules 2018; 19:481-489. [DOI: 10.1021/acs.biomac.7b01592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiacheng Zhao
- Centre
for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mingxia Lu
- Centre
for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Haiwang Lai
- Centre
for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hongxu Lu
- Centre
for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jacques Lalevée
- Institut de Science
des Matériaux de Mulhouse IS2M, UMR CNRS 7361, ENSCMu-UHA, 15, rue Jean Starcky, 68057 Mulhouse Cedex, France
| | - Christopher Barner-Kowollik
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
| | - Martina H. Stenzel
- Centre
for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Pu Xiao
- Centre
for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Institut de Science
des Matériaux de Mulhouse IS2M, UMR CNRS 7361, ENSCMu-UHA, 15, rue Jean Starcky, 68057 Mulhouse Cedex, France
| |
Collapse
|
13
|
Sequence and Architectural Control in Glycopolymer Synthesis. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700212] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/21/2017] [Indexed: 01/10/2023]
|
14
|
Huo J, Hu H, Zhang M, Hu X, Chen M, Chen D, Liu J, Xiao G, Wang Y, Wen Z. A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Adv 2017. [DOI: 10.1039/c6ra27012c] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most recent advances of the synthesis of poly-1,2,3-triazole-based functional materials.
Collapse
Affiliation(s)
- Jingpei Huo
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Huawen Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Zhang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Xiaohong Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
- Department of Chemistry
- University of Oslo
| | - Dongchu Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Jinwen Liu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Guifeng Xiao
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Yang Wang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Zhongliu Wen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| |
Collapse
|
15
|
Fu C, Herbst S, Zhang C, Whittaker AK. Polymeric 19F MRI agents responsive to reactive oxygen species. Polym Chem 2017. [DOI: 10.1039/c7py00986k] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Medical imaging agents that can report on the biological state are attracting increasing interest.
Collapse
Affiliation(s)
- Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Shauna Herbst
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| |
Collapse
|