1
|
Akacha R, Abdelhedi-Miladi I, Serghei A, Ben Romdhane H, Drockenmuller E. 1,3,4,5-Tetrasubstituted Poly(1,2,3-triazolium) Obtained through Metal-Free AA+BB Polyaddition of a Diazide and an Activated Internal Dialkyne. Macromol Rapid Commun 2024; 45:e2300644. [PMID: 38350089 DOI: 10.1002/marc.202300644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Indexed: 02/15/2024]
Abstract
A tetra(ethylene glycol)-based 1,3,4,5-tetrasubstituted poly(1,2,3-triazolium) is synthesized in two steps including: i) the catalyst-free polyaddition of a diazide and an activated internal dialkyne and ii) the N-alkylation of the resulting 1,2,3-triazole groups. In order to provide detailed structure/properties correlations different analogs are also synthesized. First, parent poly(1,2,3-triazole)s are obtained via AA+BB polyaddition using copper(I)-catalyzed alkyne-azide cycloaddition or metal-free thermal alkyne-azide cycloaddition (TAAC). Poly(1,2,3-triazole)s with higher molar masses are obtained in higher yields by TAAC polyaddition. A 1,3,4-trisubstituted poly(1,2,3-triazolium) structural analog obtained by TAAC polyaddition using a terminal activated dialkyne and subsequent N-alkylation of the 1,2,3-triazole groups enables discussing the influence of the methyl group in the C-4 or C-5 position on thermal and ion conducting properties. Obtained polymers are characterized by 1H, 13C, and 19F NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis, size exclusion chromatography, and broadband dielectric spectroscopy. The targeted 1,3,4,5-tetrasubstituted poly(1,2,3-triazolium) exhibits a glass transition temperature of -23 °C and a direct current ionic conductivity of 2.0 × 10-6 S cm-1 at 30 °C under anhydrous conditions. The developed strategy offers opportunities to further tune the electron delocalization of the 1,2,3-triazolium cation and the properties of poly(1,2,3-triazolium)s using this additional substituent as structural handle.
Collapse
Affiliation(s)
- Rania Akacha
- Laboratoire de Chimie (Bio) Organique Structurale et de Polymères, Synthèse et Études Physicochimiques (LR99ES14), Université de Tunis El Manar, Faculté des Sciences de Tunis, El Manar, 2092, Tunisia
- Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Lyon, F-69003, France
| | - Imen Abdelhedi-Miladi
- Laboratoire de Chimie (Bio) Organique Structurale et de Polymères, Synthèse et Études Physicochimiques (LR99ES14), Université de Tunis El Manar, Faculté des Sciences de Tunis, El Manar, 2092, Tunisia
| | - Anatoli Serghei
- Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Lyon, F-69003, France
| | - Hatem Ben Romdhane
- Laboratoire de Chimie (Bio) Organique Structurale et de Polymères, Synthèse et Études Physicochimiques (LR99ES14), Université de Tunis El Manar, Faculté des Sciences de Tunis, El Manar, 2092, Tunisia
| | - Eric Drockenmuller
- Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Lyon, F-69003, France
| |
Collapse
|
2
|
Li X, Ning F, Luo L, Wu J, Xiang Y, Wu X, Xiong L, Peng X. Initiating a high-temperature zinc ion battery through a triazolium-based ionic liquid. RSC Adv 2022; 12:8394-8403. [PMID: 35424792 PMCID: PMC8984945 DOI: 10.1039/d2ra00298a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
Triazolium-based ionic liquids (T1, T2 and T3) with or without terminal hydroxyl groups were prepared via Cu(i) catalysed azide-alkyne click chemistry and their properties were investigated using various technologies. The hydroxyl groups obviously affected their physicochemical properties, where with a decrease in the number of hydroxyl groups, their stability and conductivity were enhanced. T1, T2 and T3 showed relatively high thermal stability, and their electrochemical stability windows (ESWs) were 4.76, 4.11 and 3.52 V, respectively. T1S-20 was obtained via the addition of zinc trifluoromethanesulfonic acid (Zn(CF3SO3)2) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to T1, displaying conductivity and ESW values of 1.55 × 10-3 S cm-1 and 6.36 V at 30 °C, respectively. Subsequently, a Zn/Li3V2(PO4)3 battery was assembled using T1S-20 as the electrolyte and its performances at 30 °C and 80 °C were investigated. The battery showed a capacity of 81 mA h g-1 at 30 °C, and its capacity retention rate was 89% after 50 cycles. After increasing the temperature to 80 °C, its initial capacity increased to 111 mA h g-1 with a capacity retention rate of 93.6% after 100 cycles, which was much higher than that of the aqueous electrolyte (WS-20)-based zinc ion battery (71.8%). Simultaneously, the T1S-20 electrolyte-based battery exhibited a good charge/discharge efficiency, and its Coulomb efficiency was 99%. Consequently, the T1S-20 electrolyte displayed a better performance in the Zn/Li3V2(PO4)3 battery than that with the aqueous electrolyte, especially at high temperature.
Collapse
Affiliation(s)
- Xun Li
- College of Physics and Electromechanical Engineering, Jishou University Jishou 416000 China
| | - Fawen Ning
- College of Chemistry and Chemical Engineering, Jishou University Jishou 416000 China
| | - Lin Luo
- College of Chemistry and Chemical Engineering, Jishou University Jishou 416000 China
| | - Jianhua Wu
- College of Physics and Electromechanical Engineering, Jishou University Jishou 416000 China
| | - Yanhong Xiang
- College of Physics and Electromechanical Engineering, Jishou University Jishou 416000 China
| | - Xianwen Wu
- College of Chemistry and Chemical Engineering, Jishou University Jishou 416000 China
| | - Lizhi Xiong
- College of Pharmacy, Jishou University Jishou 416000 China
| | - Xiaochun Peng
- College of Chemistry and Chemical Engineering, Jishou University Jishou 416000 China
| |
Collapse
|
3
|
Hirai R, Hibino T, Watanabe T, Teranishi T, Ono T. One-pot synthesis of poly(ionic liquid)s with 1,2,3-triazolium-based backbones via clickable ionic liquid monomers. RSC Adv 2020; 10:37743-37748. [PMID: 35515169 PMCID: PMC9057204 DOI: 10.1039/d0ra07948k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Clickable α-azide-ω-alkyne ionic liquid monomers were developed and subsequently applied to the one-pot synthesis of ionically conducting poly(ionic liquid)s with 1,2,3-triazolium-based backbones through a click chemistry strategy. This approach does not require the use of solvents, polymerisation mediators, or catalysts. The obtained poly(ionic liquid)s were characterized by NMR, differential scanning calorimetry, thermogravimetric analysis, and impedance spectroscopy analysis. Moreover, these poly(ionic liquid)s were cross-linked via N-alkylation with a dianion quarternizing agent to achieve enhanced ionic conductivity and mechanical strength. The resulting free-standing films showed a Young's modulus up to 4.8 MPa and ionic conductivities up to 4.60 × 10-8 S cm-1 at 30 °C. This facile synthetic strategy has the potential to expand the availability of poly(ionic liquid)s and promote the development of functional materials.
Collapse
Affiliation(s)
- Ruka Hirai
- Department of Applied Chemistry, Graduate School of Natural Science, Okayama University 3-1-1, Tsushima-naka, Kita-ku Okayama 700-8530 Japan +81-86-251-8083 +81-86-251-8083
| | - Tatsuki Hibino
- Department of Applied Chemistry, Graduate School of Natural Science, Okayama University 3-1-1, Tsushima-naka, Kita-ku Okayama 700-8530 Japan +81-86-251-8083 +81-86-251-8083
| | - Takaichi Watanabe
- Department of Applied Chemistry, Graduate School of Natural Science, Okayama University 3-1-1, Tsushima-naka, Kita-ku Okayama 700-8530 Japan +81-86-251-8083 +81-86-251-8083
| | - Takashi Teranishi
- Department of Applied Chemistry, Graduate School of Natural Science, Okayama University 3-1-1, Tsushima-naka, Kita-ku Okayama 700-8530 Japan +81-86-251-8083 +81-86-251-8083
| | - Tsutomu Ono
- Department of Applied Chemistry, Graduate School of Natural Science, Okayama University 3-1-1, Tsushima-naka, Kita-ku Okayama 700-8530 Japan +81-86-251-8083 +81-86-251-8083
| |
Collapse
|
4
|
Synthesis of Functional Hyperbranched Poly(methyltriazolylcarboxylate)s by Catalyst-free Click Polymerization of Butynoates and Azides. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2421-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Li H, Zhang H, Liao X, Sun R, Xie M. Incorporating trifunctional 1,6-heptadiyne moiety into polyacetylene ionomer for improving its physical and conductive properties. Polym Chem 2020. [DOI: 10.1039/d0py00109k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A trifunctional diyne comonomer can regulate the structure and optimize the physical state of polyacetylene ionomers, which exhibit a high ionic conductivity of 2.6 × 10−5–1.0 × 10−3 S cm−1 at 30 °C.
Collapse
Affiliation(s)
- Hongfei Li
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
- Department of Polymer Science and Engineering
| | - Hengchen Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
6
|
Jourdain A, Obadia MM, Duchet-Rumeau J, Bernard J, Serghei A, Tournilhac F, Pascault JP, Drockenmuller E. Comparison of poly(ethylene glycol)-based networks obtained by cationic ring opening polymerization of neutral and 1,2,3-triazolium diepoxy monomers. Polym Chem 2020. [DOI: 10.1039/c9py01923e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The properties of two cross-linked epoxy networks obtained by ring opening polymerization of a synthetic diepoxy 1,2,3-triazolium and a commercial poly(ethylene glycol)diglycidyl ether using benzylamine trifluoroborate as cationic initiator are compared.
Collapse
Affiliation(s)
| | - Mona M. Obadia
- Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- Lyon
| | | | - Julien Bernard
- Univ Lyon
- INSA Lyon
- CNRS
- Ingénierie des Matériaux Polymères
- Lyon
| | - Anatoli Serghei
- Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- Lyon
| | - François Tournilhac
- Molecular
- Macromolecular Chemistry
- and Materials
- ESPCI Paris
- PSL Research University
| | | | | |
Collapse
|
7
|
Wu Y, Li H, Yan Y, Shan X, Zhao M, Zhao Q, Liao X, Xie M. Pillararene-Containing Polymers with Tunable Conductivity Based on Host-Guest Complexations. ACS Macro Lett 2019; 8:1588-1593. [PMID: 35619394 DOI: 10.1021/acsmacrolett.9b00621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulating the conductivity of conducting polymers has spurred increasing studies, aiming at meeting different demands in various fields, including chemosensors, photovoltaic cells, and so on. Herein, linear pillar[5]arene-containing conjugated polymers were designed and synthesized via metathesis cyclopolymerization of pillar[5]arene-functionalized 1,6-heptadiyne. Upon addition of an ionic guest, such polymers could form inclusion complexes, of which the glass transition temperature decreased dramatically. With the aid of ionic guest and host-guest complexations between the pendant pillararenes and guest, these supramolecular materials exhibited tunable conductivity from 10-12 to 10-3 S·cm-1 at 30 °C. In addition, compared with the polymers without pendant pillar[5]arenes, such polymers showed better compatibility with the ionic guest, which could prevent the leakage of the latter one and was good for the conductivity of the material.
Collapse
Affiliation(s)
- Yue Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Hongfei Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yiqing Yan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaotao Shan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Meng Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
8
|
Anaya O, Haddane A, Drockenmuller E, Abdelhedi-Miladi I, Ben Romdhane H. Poly(1,2,3-triazolium imide)s Obtained Through AA + BB Click Polyaddition. CHEMISTRY AFRICA 2019. [DOI: 10.1007/s42250-019-00090-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Wang C, Li H, Zhang H, Sun R, Song W, Xie M. Enhanced Ionic and Electronic Conductivity of Polyacetylene with Dendritic 1,2,3-Triazolium-Oligo(ethylene glycol) Pendants. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cuifang Wang
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Hongfei Li
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Hengchen Zhang
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Wei Song
- Department of Polymer and Composite Material; School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| |
Collapse
|
10
|
Abstract
The recent progress in alkyne-based click polymerizations and their application in the preparation of new functional polymers are summarized. The challenges and opportunities in this area are also briefly discussed.
Collapse
Affiliation(s)
- Die Huang
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
- China
| | - Yong Liu
- Department of Chemistry
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction
- The Hong Kong University of Science & Technology
- Kowloon
- China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
- China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
11
|
Ye L, Wan L, Tang J, Li Y, Huang F. Novolac-based poly(1,2,3-triazolium)s with good ionic conductivity and enhanced CO2 permeation. RSC Adv 2018; 8:8552-8557. [PMID: 35539842 PMCID: PMC9078539 DOI: 10.1039/c8ra00541a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/13/2018] [Indexed: 11/21/2022] Open
Abstract
Novolac-based poly(1,2,3-triazoliums)s with 1,2,3-triazolium in the side groups spaced by oligo(ethylene glycol) show enhanced CO2 permeability.
Collapse
Affiliation(s)
- Lvyuan Ye
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology
- School of Materials Science and Engineering
- East China University of Science and Technology
- Ministry of Education
- Shanghai 200237
| | - Liqiang Wan
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology
- School of Materials Science and Engineering
- East China University of Science and Technology
- Ministry of Education
- Shanghai 200237
| | - Junkun Tang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology
- School of Materials Science and Engineering
- East China University of Science and Technology
- Ministry of Education
- Shanghai 200237
| | - Yujing Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology
- School of Materials Science and Engineering
- East China University of Science and Technology
- Ministry of Education
- Shanghai 200237
| | - Farong Huang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology
- School of Materials Science and Engineering
- East China University of Science and Technology
- Ministry of Education
- Shanghai 200237
| |
Collapse
|
12
|
Hybrid triazolium and ammonium ions-contained hyperbranched polymer with enhanced ionic conductivity. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Huo J, Hu H, Zhang M, Hu X, Chen M, Chen D, Liu J, Xiao G, Wang Y, Wen Z. A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Adv 2017. [DOI: 10.1039/c6ra27012c] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most recent advances of the synthesis of poly-1,2,3-triazole-based functional materials.
Collapse
Affiliation(s)
- Jingpei Huo
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Huawen Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Zhang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Xiaohong Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
- Department of Chemistry
- University of Oslo
| | - Dongchu Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Jinwen Liu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Guifeng Xiao
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Yang Wang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Zhongliu Wen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| |
Collapse
|
14
|
Obadia MM, Jourdain A, Serghei A, Ikeda T, Drockenmuller E. Cationic and dicationic 1,2,3-triazolium-based poly(ethylene glycol ionic liquid)s. Polym Chem 2017. [DOI: 10.1039/c6py02030e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report the synthesis and in-depth characterization of two novel poly(ionic liquid)s having poly(ethylene glycol) main chains and side chains having either one or two 1,2,3-triazolium cations with triethylene glycol spacers and bis(trifluoromethylsulfonyl)imide counter anion(s).
Collapse
Affiliation(s)
- Mona M. Obadia
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Antoine Jourdain
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Anatoli Serghei
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Taichi Ikeda
- Research Center for Functional Materials
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Eric Drockenmuller
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| |
Collapse
|
15
|
Jourdain A, Antoniuk I, Serghei A, Espuche E, Drockenmuller E. 1,2,3-Triazolium-based linear ionic polyurethanes. Polym Chem 2017. [DOI: 10.1039/c7py00406k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and detailed characterization of a series of ionic polyurethanes issued from the polyaddition of a 1,2,3-triazolium-functionalized diol monomer having a bis(trifluoromethylsulfonyl)imide counter-anion with four aliphatic, cycloaliphatic or aromatic commercial diisocyanates.
Collapse
Affiliation(s)
- Antoine Jourdain
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Iurii Antoniuk
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Anatoli Serghei
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Eliane Espuche
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Eric Drockenmuller
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| |
Collapse
|
16
|
Wu J, Li H, Zhou D, Liao X, Xie M, Sun R. Metathesis cyclopolymerization of substituted 1,6-heptadiyne and dual conductivity of doped polyacetylene bearing branched triazole pendants. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jianhua Wu
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Hongfei Li
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Dandan Zhou
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| |
Collapse
|
17
|
Wu J, Wang C, Zhou D, Liao X, Xie M, Sun R. Branched 1,2,3-Triazolium-Functionalized Polyacetylene with Enhanced Conductivity. Macromol Rapid Commun 2016; 37:2017-2022. [DOI: 10.1002/marc.201600498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/10/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Jianhua Wu
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Cuifang Wang
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Dandan Zhou
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| |
Collapse
|
18
|
Jourdain A, Serghei A, Drockenmuller E. Enhanced Ionic Conductivity of a 1,2,3-Triazolium-Based Poly(siloxane ionic liquid) Homopolymer. ACS Macro Lett 2016; 5:1283-1286. [PMID: 35614741 DOI: 10.1021/acsmacrolett.6b00761] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A 1,2,3-triazolium-based poly(siloxane ionic liquid) (PSIL) is synthesized by UV-triggered thiol-ene ligation between a poly[(mercaptopropyl)methylsiloxane] and a tailor-made vinyl-functionalized triethylene glycol-based 1,2,3-triazolium ionic liquid. The quantitative nature of the thiol-ene coupling is demonstrated by 1H and 13C NMR, whereas properties of this new PSIL are discussed based on solubility, size exclusion chromatography, differential scanning calorimetry, thermogravimetric analysis, and broadband dielectric spectroscopy measurements. Besides exhibiting low glass transition temperature (Tg = -62 °C) and high thermal stability (Td10 = 284 °C), this new class of poly(1,2,3-triazolium) demonstrates the highest value of bulk anhydrous ionic conductivity reported to date for PILs (σDC = 7 × 10-5 S cm-1 at 30 °C).
Collapse
Affiliation(s)
- Antoine Jourdain
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux
Polymères, UMR 5223, F-69003, Lyon, France
| | - Anatoli Serghei
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux
Polymères, UMR 5223, F-69003, Lyon, France
| | - Eric Drockenmuller
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux
Polymères, UMR 5223, F-69003, Lyon, France
| |
Collapse
|
19
|
Cao X, Shi Y, Gan W, Naguib H, Wang X, Graff RW, Gao H. Effect of Monomer Structure on the CuAAC Polymerization To Produce Hyperbranched Polymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01426] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaosong Cao
- Department of Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Yi Shi
- Department of Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Weiping Gan
- Department of Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Hannah Naguib
- Department of Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Xiaofeng Wang
- Department of Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Robert W. Graff
- Department of Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Haifeng Gao
- Department of Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|