1
|
Highly selective and sensitive response of curcumin thioether derivative for the detection of hypochlorous acid by fluorimetric method. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02528-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
Aminzadeh A, Salarinejad A. Citicoline protects against lead-induced oxidative injury in neuronal PC12 cells. Biochem Cell Biol 2019; 97:715-721. [PMID: 30925221 DOI: 10.1139/bcb-2018-0218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lead is a major environmental pollutant that causes serious adverse effects on biological systems and cells. In this study, we examined the effect of citicoline on lead-induced apoptosis in PC12 cells. The PC12 cells were pre-treated with citicoline and then exposed to lead for 48 h. The effect of citicoline on cell survival was examined by MTT assay. In addition, levels of lipid peroxidation (LPO), total thiol groups, total antioxidant power (TAP), catalase (CAT), superoxide dismutase (SOD), and reduced glutathione (GSH) were evaluated. The levels of Bax, Bcl-2, and caspase-3 were also measured, by Western blot analysis. Citicoline significantly increased the cell viability of PC12 cells exposed to lead. Treatment of PC12 cells with lead increased LPO levels, and citicoline effectively decreased LPO. Levels of total thiol groups and TAP, CAT, SOD, and GSH were significantly increased in citicoline-treated PC12 cells compared with the lead-treated group. Citicoline pretreatment significantly reduced Bax expression, and increased the level of Bcl-2 expression. Citicoline also reduced caspase-3 activation in PC12 cells compared with the lead-treated group. Our findings indicate that citicoline exerts a neuroprotective effect against lead-induced injury in PC12 cells through mitigation of oxidative stress and, at least in part, through suppression of the mitochondria-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Azadeh Aminzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ayda Salarinejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Wu Y, Xu Y, Huang X, Ye D, Han M, Wang HL. Regulatory Roles of Histone Deacetylases 1 and 2 in Pb-induced Neurotoxicity. Toxicol Sci 2019; 162:688-701. [PMID: 29301062 DOI: 10.1093/toxsci/kfx294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lead (Pb) prevails among the environmental hazards against human health. Although increasing evidence highlights the epigenetic roles underlying the Pb-induced neurotoxicity, the exact mechanisms concerning histone acetylation and its causative agents are still at its infancy. In the present study, the roles of histone deacetylases 1 and 2 (HDAC1/2), as well as acetylation of Lys9 on histone H3 (Ac-H3K9), in Pb-induced neurotoxicity were investigated. Pb was administered to PC12 cells at 10 μM for 24 h. And Sprague Dawley rats were chronically exposed to Pb through drinking water containing 250 ppm Pb for 2 months. Owing to Pb exposure, it indicated that HDAC2 was up-regulated accompanied by Ac-H3K9 down-regulation. Meanwhile, chromatin immunoprecipitation assay revealed that the changes in HDAC2 were attributed to histone H3 Lys27 trimethylation occupancy on its promoter. Blockade of HDAC2 with either Trichostatin A or HDAC2-knocking down construct (shHDAC2) resulted in amelioration of neurite outgrowth deficits via increasing Ac-H3K9 levels. It implied that HDAC2 plays essential regulatory roles in Pb-induced neurotoxicity. And, coimmunoprecipitation trials revealed that HDAC2 colocalized with HDAC1, forming a so-called HDAC1/2 complex. Subsequently, it was shown that HDAC1/2 repression could markedly prevent neurite outgrowth impairment and rescue the spatial memory deficits caused by Pb exposure, unequivocally implicating this complex in the studied toxicological process. Furthermore, Notch2 maybe the functional target of the HDAC1/2 and Ac-H3K9 alterations. Our study provided insight into the precise roles of HDAC1/2 in Pb-induced neurotoxicity, and thereby provided a promising molecular target for medical intervention of neurological disorders with environmental etiology.
Collapse
Affiliation(s)
- Yulan Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Yi Xu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Xiyao Huang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Danlei Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Miaomiao Han
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Hui-Li Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| |
Collapse
|
4
|
Epigallocatechin-3-gallate improves cardiac hypertrophy and short-term memory deficits in a Williams-Beuren syndrome mouse model. PLoS One 2018; 13:e0194476. [PMID: 29554110 PMCID: PMC5858783 DOI: 10.1371/journal.pone.0194476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/05/2018] [Indexed: 11/19/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of 26–28 genes at chromosome band 7q11.23. The complete deletion (CD) mouse model mimics the most common deletion found in WBS patients and recapitulates most neurologic features of the disorder along with some cardiovascular manifestations leading to significant cardiac hypertrophy with increased cardiomyocytes’ size. Epigallocatechin-3-gallate (EGCG), the most abundant catechin found in green tea, has been associated with potential health benefits, both on cognition and cardiovascular phenotypes, through several mechanisms. We aimed to investigate the effects of green tea extracts on WBS-related phenotypes through a phase I clinical trial in mice. After feeding CD animals with green tea extracts dissolved in the drinking water, starting at three different time periods (prenatal, youth and adulthood), a set of behavioral tests and several anatomical, histological and molecular analyses were performed. Treatment resulted to be effective in the reduction of cardiac hypertrophy and was also able to ameliorate short-term memory deficits of CD mice. Taken together, these results suggest that EGCG might have a therapeutic and/or preventive role in the management of WBS.
Collapse
|
5
|
Kiwifruit Alleviates Learning and Memory Deficits Induced by Pb through Antioxidation and Inhibition of Microglia Activation In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5645324. [PMID: 28386309 PMCID: PMC5366204 DOI: 10.1155/2017/5645324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/12/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
Abstract
Lead (Pb) exposure, in particular during early postnatal life, increases susceptibility to cognitive dysfunction and neurodegenerative outcomes. The detrimental effect of Pb exposure is basically due to an increasing ROS production which overcomes the antioxidant systems and finally leads to cognitive dysfunction. Kiwifruit is rich in the antioxidants like vitamin C and polyphenols. This study aims to investigate the effects and mechanism of kiwifruit to alleviate learning and memory deficits induced by Pb exposure. Sprague-Dawley (SD) rat pups acquired Pb indirectly through their mothers during lactation period and after postnatal day 21 (PND21) directly acquired Pb by themselves. Five kinds of kiwifruits were collected in this study and the amounts of vitamin C and polyphenols in them were measured and the antioxidation effects were determined. Among them, Qinmei kiwifruit (Qm) showed the strongest antioxidation effects in vitro. In vivo, Qm significantly repaired Pb-induced learning and memory deficits and dendritic spine loss. In addition, Pb compromised the enzymatic activity and transcriptional levels of SOD and GSH-Px and decreased the microglial activation, which, to some extent, could be reversed by Qm kiwifruit administration. The results suggest that kiwifruit could alleviate Pb-induced cognitive deficits possibly through antioxidative stress and microglia inactivation. Consequently, kiwifruit could be potentially regarded as the functional food favorable in the prevention and treatment of Pb intoxication.
Collapse
|
6
|
Lou ZY, Chen W, Xue WZ, Ding JJ, Yang QQ, Wang HL. Dietary intake of magnesium-l-threonate alleviates memory deficits induced by developmental lead exposure in rats. RSC Adv 2017. [DOI: 10.1039/c6ra26959a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Elevation of brain magnesium enhances cognitive capacity.
Collapse
Affiliation(s)
- Zhi-Yi Lou
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Weiheng Chen
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- PR China
| | - Wei-zhen Xue
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Jin-Jun Ding
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Qian-Qian Yang
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Hui-Li Wang
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei
- PR China
| |
Collapse
|
7
|
Hu F, Ge MM, Chen WH. Effects of lead exposure on dendrite and spine development in hippocampal dentate gyrus areas of rats. Synapse 2016; 70:87-97. [DOI: 10.1002/syn.21873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Fan Hu
- School of Biotechnology and Food Engineering; Hefei University of Technology; Hefei Anhui 230009 People's Republic of China
| | - Meng-Meng Ge
- School of Biotechnology and Food Engineering; Hefei University of Technology; Hefei Anhui 230009 People's Republic of China
| | - Wei-Heng Chen
- School of Life Sciences; University of Science and Technology of China; Hefei Anhui 230027 People's Republic of China
| |
Collapse
|
8
|
Du Y, Ge MM, Xue W, Yang QQ, Wang S, Xu Y, Wang HL. Chronic Lead Exposure and Mixed Factors of Gender×Age×Brain Regions Interactions on Dendrite Growth, Spine Maturity and NDR Kinase. PLoS One 2015; 10:e0138112. [PMID: 26368815 PMCID: PMC4569283 DOI: 10.1371/journal.pone.0138112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/26/2015] [Indexed: 02/01/2023] Open
Abstract
NDR1/2 kinase is essential in dendrite morphology and spine formation, which is regulated by cellular Ca2+. Lead (Pb) is a potent blocker of L-type calcium channel and our recent work showed Pb exposure impairs dendritic spine outgrowth in hippocampal neurons in rats. But the sensitivity of Pb-induced spine maturity with mixed factors (gender×age×brain regions) remains unknown. This study aimed to systematically investigate the effect of Pb exposure on spine maturity in rat brain with three factors (gender×age×brain regions), as well as the NDR1/2 kinase expression. Sprague–Dawley rats were exposed to Pb from parturition to postnatal day 30, 60, 90, respectively. Golgi-Cox staining was used to examine spine maturity. Western blot assay was applied to measure protein expression and real-time fluorescence quantitative PCR assay was used to examine mRNA levels. The results showed chronic Pb exposure significantly decreased dendritic length and impaired spine maturity in both rat hippocampus and medial prefrontal cortex. The impairment of dendritic length induced by Pb exposure tended to adolescence > adulthood, hippocampus > medial prefrontal cortex and female > male. Pb exposure induced significant damage in spine maturity during adolescence and early adult while little damage during adult in male rat brain and female medial prefrontal cortex. Besides, there was sustained impairment from adolescence to adulthood in female hippocampus. Interestingly, impairment of spine maturity followed by Pb exposure was correlated with NDR1/2 kinase. The reduction of NDR1/2 kinase protein expression after Pb exposure was similar to the result of spine maturity. In addition, NDR2 and their substrate Rabin3 mRNA levels were significantly decreased by Pb exposure in developmental rat brain. Taken together, Pb exposure impaired dendrite growth and maturity which was subject to gender×age×brain regions effects and related to NDR1/2 signal expression.
Collapse
Affiliation(s)
- Yang Du
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Meng-Meng Ge
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Weizhen Xue
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Qian-Qian Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Shuang Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Yi Xu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Hui-Li Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
- * E-mail:
| |
Collapse
|