1
|
Nayl AA, Arafa WAA, Ahmed IM, Abd-Elhamid AI, El-Fakharany EM, Abdelgawad MA, Gomha SM, Ibrahim HM, Aly AA, Bräse S, Mourad AK. Novel Pyridinium Based Ionic Liquid Promoter for Aqueous Knoevenagel Condensation: Green and Efficient Synthesis of New Derivatives with Their Anticancer Evaluation. Molecules 2022; 27:2940. [PMID: 35566291 PMCID: PMC9105511 DOI: 10.3390/molecules27092940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022] Open
Abstract
Herein, a distinctive dihydroxy ionic liquid ([Py-2OH]OAc) was straightforwardly assembled from the sonication of pyridine with 2-chloropropane-1,3-diol by employing sodium acetate as an ion exchanger. The efficiency of the ([Py-2OH]OAc as a promoter for the sono-synthesis of a novel library of condensed products through DABCO-catalyzed Knoevenagel condensation process of adequate active cyclic methylenes and ninhydrin was next investigated using ultimate greener conditions. All of the reactions studied went cleanly and smoothly, and the resulting Knoevenagel condensation compounds were recovered in high yields without detecting the aldol intermediates in the end products. Compared to traditional strategies, the suggested approach has numerous advantages including mild reaction conditions with no by-products, eco-friendly solvent, outstanding performance in many green metrics, and usability in gram-scale synthesis. The reusability of the ionic liquid was also studied, with an overall retrieved yield of around 97% for seven consecutive runs without any substantial reduction in the performance. The novel obtained compounds were further assessed for their in vitro antitumor potential toward three human tumor cell lines: Colo-205 (colon cancer), MCF-7 (breast cancer), and A549 (lung cancer) by employing the MTT assay, and the findings were evaluated with the reference Doxorubicin. The results demonstrated that the majority of the developed products had potent activities at very low doses. Compounds comprising rhodanine (5) or chromane (12) moieties exhibited the most promising cytotoxic effects toward three cell lines, particularly rhodanine carboxylic acid derivative (5c), showing superior cytotoxic effects against the investigated cell lines compared to the reference drug. Furthermore, automated docking simulation studies were also performed to support the results obtained.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia; (W.A.A.A.); (I.M.A.)
| | - Wael A. A. Arafa
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia; (W.A.A.A.); (I.M.A.)
| | - Ismail M. Ahmed
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia; (W.A.A.A.); (I.M.A.)
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt;
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab, Alexandria 21934, Egypt;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Al Jamiah, Saudi Arabia
| | - Hamada M. Ibrahim
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt; (H.M.I.); (A.K.M.)
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Asmaa K. Mourad
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt; (H.M.I.); (A.K.M.)
| |
Collapse
|
3
|
Meng D, Qiao Y, Wang X, Wen W, Zhao S. DABCO-catalyzed Knoevenagel condensation of aldehydes with ethyl cyanoacetate using hydroxy ionic liquid as a promoter. RSC Adv 2018; 8:30180-30185. [PMID: 35546849 PMCID: PMC9085423 DOI: 10.1039/c8ra06506c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 11/24/2022] Open
Abstract
N-(2-Hydroxy-ethyl)-pyridinium chloride ([HyEtPy]Cl) was synthesized and explored as a novel promoter for 1,4-diazabicyclo [2.2.2] octane (DABCO)-catalyzed Knoevenagel condensation reactions, which showed better catalytic activity compared to other ionic liquid (IL) that had no hydroxyl group attached to the IL scaffold. The effect of hydrogen bond formation between the hydroxyl group of [HyEtPy]Cl and the carbonyl group of aldehyde played an important role in the Knoevenagel condensation reaction. In the [HyEtPy]Cl–H2O–DABCO composite system, Knoevenagel condensation reactions proceeded smoothly and cleanly, and the corresponding Knoevenagel condensation products were obtained in good to excellent yields in all cases examined. This protocol provides a versatile solvent–catalyst system, which has notable advantages such as being eco-friendly, ease of work-up and convenient reuse of the ionic liquid. N-(2-Hydroxy-ethyl)-pyridinium chloride ([HyEtPy]Cl) was synthesized and explored as a novel promoter for 1,4-diazabicyclo [2.2.2] octane (DABCO)-catalyzed Knoevenagel condensation reactions, excellent catalytic activity was obtained.![]()
Collapse
Affiliation(s)
- Dan Meng
- School Chemistry and Material Science
- Shanxi Normal University
- Linfen 041001
- China
| | - Yongsheng Qiao
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
| | - Xin Wang
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
| | - Wei Wen
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
| | - Sanhu Zhao
- School Chemistry and Material Science
- Shanxi Normal University
- Linfen 041001
- China
- Department of Chemistry
| |
Collapse
|
4
|
Pereira MP, Souza Martins RD, de Oliveira MAL, Bombonato FI. Amino acid ionic liquids as catalysts in a solvent-free Morita–Baylis–Hillman reaction. RSC Adv 2018; 8:23903-23913. [PMID: 35540299 PMCID: PMC9081752 DOI: 10.1039/c8ra02409j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/23/2018] [Indexed: 12/16/2022] Open
Abstract
In the present work, we describe the preparation of ten amino acid ionic liquids (AAILs) formed from ammonium salts as cations, derivatives of glycerol, and natural amino acids as anions. All of them are viscous oils, colorless or pale yellow, and hygroscopic at room temperature. They have appreciable solubility in many protic and aprotic polar solvents. The AAILs were used as catalysts in a Morita–Baylis–Hillman (MBH) reaction. The ionic liquids derivative from l-proline and l-histidine demonstrated the ability to catalyze the reaction between methyl vinyl ketone and aromatic aldehydes differently substituted in the absence of an additional co-catalyst under organic solvent-free conditions. The AAIL derivatives from l-valine, l-leucine, and l-tyrosine catalyzed the MBH reaction only in the presence of imidazole. The MBH adducts were obtained in moderate to good yields. Although the catalytic site in the ILs was in its enantiomerically pure form, all the MBH adducts were obtained in their racemic form. In this work, we describe the preparation of ten amino acid ionic liquids (AAILs). The AAILs were used as catalysts in a Morita–Baylis–Hillman (MBH) reaction. The MBH adducts were obtained from moderate to good yields and in their racemic form.![]()
Collapse
Affiliation(s)
- Mathias Prado Pereira
- Group of Studies in Organic Synthesis and Catalysis
- Department of Chemistry
- University of Juiz de Fora
- Juiz de Fora
- Brazil
| | - Rafaela de Souza Martins
- Group of Studies in Organic Synthesis and Catalysis
- Department of Chemistry
- University of Juiz de Fora
- Juiz de Fora
- Brazil
| | | | - Fernanda Irene Bombonato
- Group of Studies in Organic Synthesis and Catalysis
- Department of Chemistry
- University of Juiz de Fora
- Juiz de Fora
- Brazil
| |
Collapse
|
5
|
Zhao S, Zhi H, Zhang M, Yan Q, Fan J, Guo J. Morita–Baylis–Hillman reaction in eutectic solvent under aqueous medium. RSC Adv 2016. [DOI: 10.1039/c6ra04710f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aqueous solvent-catalyst system formed by DES (1ChCl/2Gly) and DABCO is more useful and practical to the Morita–Baylis–Hillman reaction.
Collapse
Affiliation(s)
- Sanhu Zhao
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
| | - Hangyu Zhi
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
| | - Mi Zhang
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
| | - Qin Yan
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
| | - Jianfeng Fan
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
| | - Jinchang Guo
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
| |
Collapse
|