1
|
Moffa S, Carradori S, Melfi F, Fontana A, Ciulla M, Di Profio P, Aschi M, Wolicki RD, Pilato S, Siani G. Fine-tuning of membrane permeability by reversible photoisomerization of aryl-azo derivatives of thymol embedded in lipid nanoparticles. Colloids Surf B Biointerfaces 2024; 241:114043. [PMID: 38901266 DOI: 10.1016/j.colsurfb.2024.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Responsiveness of liposomes to external stimuli, such as light, should allow a precise spatial and temporal control of release of therapeutic agents or ion transmembrane transport. Here, some aryl-azo derivatives of thymol are synthesized and embedded into liposomes from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine to obtain light-sensitive membranes whose photo-responsiveness, release behaviour, and permeability towards Cl- ions are investigated. The hybrid systems are in-depth characterized by dynamic light scattering, atomic force microscopy and Raman spectroscopy. In liposomal bilayer the selected guests undergo reversible photoinduced isomerization upon irradiation with UV and visible light, alternately. Non-irradiated hybrid liposomes retain entrapped 5(6)-carboxyfluorescein (CF), slowing its spontaneous leakage, whereas UV-irradiation promotes CF release, due to guest trans-to-cis isomerization. Photoisomerization also influences membrane permeability towards Cl- ions. Data processing, according to first-order kinetics, demonstrates that Cl- transmembrane transport is enhanced by switching the guest from trans to cis but restored by back-switching the guest from cis to trans upon illumination with blue light. Finally, the passage of Cl- ions across the bilayer can be fine-tuned by irradiation with light of longer λ and different light-exposure times. Fine-tuning the photo-induced structural response of the liposomal membrane upon isomerization is a promising step towards effective photo-dynamic therapy.
Collapse
Affiliation(s)
- Samanta Moffa
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Simone Carradori
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Francesco Melfi
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Antonella Fontana
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy; UdA-TechLab, Research Center, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Michele Ciulla
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy; UdA-TechLab, Research Center, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Pietro Di Profio
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Massimiliano Aschi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, via Vetoio, Coppito, L'Aquila 67100, Italy
| | - Rafal Damian Wolicki
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Serena Pilato
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy; UdA-TechLab, Research Center, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy.
| | - Gabriella Siani
- Dipartimento di Farmacia, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy; UdA-TechLab, Research Center, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy.
| |
Collapse
|
2
|
Lee J, Park JM, Jang WD. Cyclodextrin-bearing telechelic poly(2-isopropyl-2-oxazoline): Extremely large shifts of phase transition temperature by photo-responsive guest inclusion. Carbohydr Polym 2019; 221:48-54. [DOI: 10.1016/j.carbpol.2019.05.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/23/2019] [Accepted: 05/23/2019] [Indexed: 01/29/2023]
|
3
|
Yuan Z, Wang J, Wang Y, Zhong Y, Zhang X, Li L, Wang J, Lincoln SF, Guo X. Redox-Controlled Voltage Responsive Micelles Assembled by Noncovalently Grafted Polymers for Controlled Drug Release. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02641] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhenyu Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Jie Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Yujie Zhong
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Xinsheng Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Stephen F. Lincoln
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, 832000 Shihezi, Xinjiang, P. R. China
| |
Collapse
|
4
|
Du Z, Ke K, Chang X, Dong R, Ren B. Controlled Self-Assembly of Multiple-Responsive Superamphiphilc Polymers Based on Host-Guest Inclusions of a Modified PEG with β-Cyclodextrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5606-5614. [PMID: 29681154 DOI: 10.1021/acs.langmuir.8b00470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Superamphiphilic polymers (SAPs) constructed by host-guest inclusion can self-assemble into various nanostructures in solution, which can find applications in many fields such as nanodevices, drug delivery, and template synthesis. Herein, we report the controlled self-assembly of multiple-responsive SAP based on a selective host-guest inclusion of β-cyclodextrin (β-CD) with a modified poly(ethylene glycol) (PEG) (FcC11AzoPEG) consisting of a ferrocene (Fc) end group, a C11 alkyl chain, an azobenzene (Azo) block, and a poly(ethylene glycol)methyl ether (PEG) chain. These SAPs can self-assemble into interesting nanostructures in water upon exposure to different stimuli because β-CD can be selectively included with different guests, such as Fc, Azo, and C11 alkyl chain, under different stimuli. The inclusion complex of Fc with β-CD (Fc@β-CD SAP) can form nanowire micelles in aqueous solution. The nanowire micelles can be transformed into spindle micelles with the addition of oxidant because the majority of β-CDs dissociated from the complex Fc@β-CD SAP due to a conversion of Fc to Fc+ and will preferentially include with Azo group to form another dominant inclusion complex (Azo@β-CD SAP). After UV irradiation, the spindle micelles can be further transformed into spherical micelles because most of β-CDs are excluded from the complex Azo@β-CD SAP due to a trans- to cis-Azo conversion and then form a dominant inclusion complex with C11 alkyl chains (C11@β-CD SAP). This work not only demonstrates the selective host-guest inclusion of stimuli-responsive groups modified PEG with β-CD but also provides a useful approach for construction of diverse morphologies.
Collapse
Affiliation(s)
- Zhukang Du
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Kang Ke
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Xueyi Chang
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Renfeng Dong
- School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , China
| | - Biye Ren
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
5
|
Li T, Wang T, Xu J, Zou R, Si Z, Becker J, Li L, Cohen Stuart MA, Prud’homme RK, Guo X. Pressure Effect on the Rheological Behavior of Waxy Crude Oil with Comb-Type Copolymers Bearing Azobenzene Pendant. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b05217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tongshuai Wang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jun Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Run Zou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhongye Si
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Julian Becker
- Department of Process Engineering, Nuremberg Institute of Technology, Nuremberg 90489, Germany
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Martien A. Cohen Stuart
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Robert K. Prud’homme
- Department of Chemical Engineering and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, China
| |
Collapse
|
6
|
Li T, Xu J, Zou R, Jiang H, Wang J, Li L, Cohen Stuart MA, Prud’homme RK, Guo X. Effect of Spacer Length between Phenyl Pendant and Backbone in Comb Copolymers on Flow Ability of Waxy Oil with Asphaltenes. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02904] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Li
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Xu
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Run Zou
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hejian Jiang
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junyou Wang
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Li
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Martien A. Cohen Stuart
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Robert K. Prud’homme
- Department
of Chemical Engineering and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Xuhong Guo
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, PR China
| |
Collapse
|
7
|
Liu D, Wang S, Xu S, Liu H. Photocontrollable Intermittent Release of Doxorubicin Hydrochloride from Liposomes Embedded by Azobenzene-Contained Glycolipid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1004-1012. [PMID: 27668306 DOI: 10.1021/acs.langmuir.6b03051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Azobenzene-contained glycolipids GlyAzoCns, newly structured azobenzene derivatives, which have an azobenzene moiety between the galactosyl and carbon chains of various sizes, have been synthesized. The GlyAzoCns undergo reversible photoinduced isomerization in both ethanol solution (free state) and liposomal bilayer (restricted state) upon irradiation with UV and vis light alternately. The drug release of Liposome@Gly induced by isomerization was found to be an instantaneous behavior. The photoinduced control of DOX release from liposome was investigated in various modes. The Liposome@Glys have been found to keep the entrapped DOX stably in the dark with less than 10% leakage in 10 h but release nearly 100% of cargos instantaneously with UV irradiation. The molecular structure of GlyAzoCns and the property of the liposomal bilayer were considered as important factors influencing drug release. Among the synthesized GlyAzoCns, GlyAzoC7 was shown to be the most efficient photosensitive actuator for controlling drug release. A lower proportion of cholesterol in Liposome@Glys was conducive to promote the release amount. Results indicated that the synthesized GlyAzoCns could act as a role of smart actuators in the liposome bilayer and control the drug to release temporarily and quantitatively.
Collapse
Affiliation(s)
- Danyang Liu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Sijia Wang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Honglai Liu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
8
|
Control of interparticle spacing in stable aggregates of gold nanoparticles by light irradiation. Polym J 2015. [DOI: 10.1038/pj.2015.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|