1
|
Da Ros V, Oddo L, Toumia Y, Guida E, Minosse S, Strigari L, Strolin S, Paolani G, Di Giuliano F, Floris R, Garaci F, Dolci S, Paradossi G, Domenici F. PVA-Microbubbles as a Radioembolization Platform: Formulation and the In Vitro Proof of Concept. Pharmaceutics 2023; 15:pharmaceutics15010217. [PMID: 36678846 PMCID: PMC9862136 DOI: 10.3390/pharmaceutics15010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
This proof-of-concept study lays the foundations for the development of a delivery strategy for radioactive lanthanides, such as Yttrium-90, against recurrent glioblastoma. Our appealing hypothesis is that by taking advantage of the combination of biocompatible polyvinyl alcohol (PVA) microbubbles (MBs) and endovascular radiopharmaceutical infusion, a minimally invasive selective radioembolization can be achieved, which can lead to personalized treatments limiting off-target toxicities for the normal brain. The results show the successful formulation strategy that turns the ultrasound contrast PVA-shelled microbubbles into a microdevice, exhibiting good loading efficiency of Yttrium cargo by complexation with a bifunctional chelator. The selective targeting of Yttrium-loaded MBs on the glioblastoma-associated tumor endothelial cells can be unlocked by the biorecognition between the overexpressed αVβ3 integrin and the ligand Cyclo(Arg-Gly-Asp-D-Phe-Lys) at the PVA microbubble surface. Hence, we show the suitability of PVA MBs as selective Y-microdevices for in situ injection via the smallest (i.e., 1.2F) neurointerventional microcatheter available on the market and the accumulation of PVA MBs on the HUVEC cell line model of integrin overexpression, thereby providing ~6 × 10-15 moles of Y90 per HUVEC cell. We further discuss the potential impact of using such versatile PVA MBs as a new therapeutic chance for treating glioblastoma multiforme recurrence.
Collapse
Affiliation(s)
- Valerio Da Ros
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Letizia Oddo
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Yosra Toumia
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Silvia Minosse
- UOC Diagnostica per Immagini, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Strolin
- Department of Medical Physics, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Giulia Paolani
- Department of Medical Physics, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesca Di Giuliano
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Roberto Floris
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Fabio Domenici
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
2
|
Garanti T, Alhnan MA, Wan KW. RGD-decorated solid lipid nanoparticles enhance tumor targeting, penetration and anticancer effect of asiatic acid. Nanomedicine (Lond) 2020; 15:1567-1583. [DOI: 10.2217/nnm-2020-0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Asiatic acid (AA) is a promising anticancer agent, however, its delivery to glioblastoma is a major challenge. This work investigates the beneficial therapeutic efficacy of RGD-conjugated solid lipid nanoparticles (RGD-SLNs) for the selective targeting of AA to gliblastoma. Materials & methods: AA-containing RGD-SLNs were prepared using two different PEG-linker size. Targetability and efficacy were tested using monolayer cells and spheroid tumor models. Results: RGD-SLNs significantly improved cytotoxicity of AA against U87-MG monolayer cells and enhanced cellular uptake compared with non-RGD-containing SLNs. In spheroid models, AA-containing RGD-SLNs showed superior control in tumor growth, improved cytotoxicity and enhanced spheroid penetration when compared with AA alone or non-RGD-containing SLNs. Conclusion: This study illustrates the potential of AA-loaded RGD-SLNs as efficacious target-specific treatment for glioblastoma.
Collapse
Affiliation(s)
- Tanem Garanti
- Faculty of Pharmacy, Cyprus International University, Haspolat, Nicosia, 99258, Cyprus via Mersin 10, Turkey
| | - Mohamed A Alhnan
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Ka-Wai Wan
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| |
Collapse
|
3
|
Tejería E, Giglio J, Fernández L, Rey A. Development and evaluation of a 99mTc(V)-nitrido complex derived from estradiol for breast cancer imaging. Appl Radiat Isot 2019; 154:108854. [PMID: 31442798 DOI: 10.1016/j.apradiso.2019.108854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 08/11/2019] [Indexed: 01/10/2023]
Abstract
Estrogen receptors are overexpressed in 70% of breast cancer and identification of their presence is important to select the appropriate treatment. This work proposes the preparation and evaluation of an estradiol derived as potential ER imaging agent. Ethinylestradiol was derivatized to introduce a dithiocarbamate function for Tc coordination. Labeling was achieved through the formation of a symmetric Tc(V)-nitrido complex with a radiochemical purity (RCP) > 95%. Physicochemical evaluation, cell uptake, biodistribution in normal animals and in nude mice bearing induced ER + breast tumors showed promising results.
Collapse
Affiliation(s)
- Emilia Tejería
- Área de Radioquímica, Facultad de Química, General Flores 2124, Universidad de La República, 11800, Montevideo, Uruguay
| | - Javier Giglio
- Área de Radioquímica, Facultad de Química, General Flores 2124, Universidad de La República, 11800, Montevideo, Uruguay.
| | - Leticia Fernández
- Área de Radioquímica, Facultad de Química, General Flores 2124, Universidad de La República, 11800, Montevideo, Uruguay
| | - Ana Rey
- Área de Radioquímica, Facultad de Química, General Flores 2124, Universidad de La República, 11800, Montevideo, Uruguay.
| |
Collapse
|
4
|
Debordeaux F, Chansel-Debordeaux L, Pinaquy JB, Fernandez P, Schulz J. What about αvβ3 integrins in molecular imaging in oncology? Nucl Med Biol 2018; 62-63:31-46. [DOI: 10.1016/j.nucmedbio.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|