1
|
Öziç C, Ertaş E, Baran MF, Baran A, Ahmadian E, Eftekhari A, Khalilov R, Aliyev E, Yıldıztekin M. Synthesis and characterization of activated carbon-supported magnetic nanocomposite (MNPs-OLAC) obtained from okra leaves as a nanocarrier for targeted delivery of morin hydrate. Front Pharmacol 2024; 15:1482130. [PMID: 39444608 PMCID: PMC11496157 DOI: 10.3389/fphar.2024.1482130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The method of encapsulating the drug molecule in a carrier, such as a magnetic nanoparticle, is a promising development that has the potential to deliver the medicine to the site where it is intended to be administered. Morin is a pentahydroxyflavone obtained from the leaves, stems, and fruits of various plantsmainly from the Moraceae family exhibiting diverse pharmacological activities such as anti-inflammatory, anti-oxidant, and free radical scavenging and helps treat diseases such as diabetes, myocardial infarction and cancer. Methods In this study, we conducted the synthesis of a nanocomposite with magnetic properties by coating biocompatible activated carbon obtained from okra plant leaves with magnetic nanoparticles. Results Characterization of the synthesized activated carbon-coated magnetic nanocomposite was confirmed by Fourier transform infrared, scanning electron microscopy, dynamic light scattering, and zeta potential. The cytotoxic effects of the drug-loaded magnetic nanocomposite were examined in HT-29 (Colorectal), MCF-7 (breast), U373 (brain), T98-G (Glioblastoma) cancer cell lines, and human umbilical vein endothelial cells healthy cell line. Discussion We studied the loading and release behavior of morin hydrate in the activated carbon-coated magnetic nanocomposite. Activated carbon-coated magnetic nanocomposite carriers can show promising results for the delivery of Morin hydrate drugs to the targeted site.
Collapse
Affiliation(s)
- Cem Öziç
- Department of Basic Medical Sciences, Department of Medical Biology, Kafkas University, Faculty of Medicine, Kars, Türkiye
| | - Erdal Ertaş
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman, Türkiye
| | - Mehmet Fırat Baran
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman, Türkiye
| | - Ayşe Baran
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, Türkiye
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Türkiye
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
| | - Elvin Aliyev
- Department of Biology and Ecology, Lankaran State University, Lankaran, Azerbaijan
| | - Mahmut Yıldıztekin
- Department of Herbal and Animal Production, Koycegiz Vocational School, Mugla Sıtkı Kocman University, Mugla, Türkiye
| |
Collapse
|
2
|
Raj S, Mahanty B, Hait S. Coagulative removal of polystyrene microplastics from aqueous matrices using FeCl 3-chitosan system: Experimental and artificial neural network modeling. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133818. [PMID: 38377913 DOI: 10.1016/j.jhazmat.2024.133818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Effluent from sewage treatment plants (STPs) is a significant source of microplastics (MPs) re-entry into the environment. Coagulation-flocculation-sedimentation (CFS) process as an initial tertiary treatment step requires investigation for coagulative MPs removal from secondary-treated sewage effluents. In this study, experiments were conducted on synthetic water containing 25 mg/L polystyrene (PS) MPs using varying dosages of FeCl3 (1-10 mg/L) and chitosan (0.25-9 mg/L) to assess the effect of process parameters, such as pH (4-8), stirring speed (0-200 rpm), and settling time (10-40 min). Results revealed that ∼89.3% and 21.4% of PS removal were achieved by FeCl3 and chitosan, respectively. Further, their combination resulted in a maximum of 99.8% removal at favorable conditions: FeCl3: 2 mg/L, chitosan: 7 mg/L, pH: 6.3, stirring speed: 100 rpm, and settling time: 30 min, with a statistically significant (p < 0.05) effect. Artificial neural network (ANN) validated the experimental results with RMSE = 1.0643 and R2 = 0.9997. Charge neutralization, confirmed by zeta potential, and adsorption, ascertained by field-emission scanning electron microscope (FESEM) and Fourier-transform infrared spectroscopy (FTIR), were primary mechanisms for efficient PS removal. For practical considerations, the application of the FeCl3-chitosan system on the effluents from moving bed biofilm reactor (MBBR) and sequencing batch reactor (SBR)-based STPs, spiked with PS microbeads, showed > 98% removal at favorable conditions.
Collapse
Affiliation(s)
- Shubham Raj
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India
| | - Byomkesh Mahanty
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India.
| |
Collapse
|
3
|
Singh A, Agarwal A, Chakraborty A, Bhardwaj R, Sutradhar S, Kumar Mittal A, Kumar Rajput S, Gupta M, Ray D, Mukherjee M. Click chemistry tailored benzimidazole functionalized triazole block-co-polymer for emergence of exotic chimaeric nano-crystalsomes. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Zhou D, Zhu LW, Wu BH, Xu ZK, Wan LS. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem 2022. [DOI: 10.1039/d1py01252e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on end-functionalized polymers synthesized by controlled/living radical polymerizations and the applications in fields including bioconjugate formation, surface modification, topology construction, and self-assembly.
Collapse
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang-Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Semerci E, Bedri TE, Kizilcan N. Preparation of thermal conductive Poly(methyl methacrylate)/Silicon nitride nanocomposites via click chemistry. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Mazumdar P, Chockalingam S, Rattan S, Gupta BK. Tunable Mechanical, Electrical, and Thermal Properties of Polymer Nanocomposites through GMA Bridging at Interface. ACS OMEGA 2018; 3:3675-3687. [PMID: 31458616 PMCID: PMC6641374 DOI: 10.1021/acsomega.8b00194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 06/01/2023]
Abstract
Polymer nanocomposites (PNCs) have become an exciting field of current research and have attracted a huge interest among both academia and industry during the last few decades. However, the multifunctional single-nanocomposite film exhibiting the combination of desired structure and properties still remains a big challenge. Herein, we report a novel strategy to address these problems by using versatile polymer glycidyl methacrylate (GMA) as a bridging medium between the filler and the polymer matrix, resulting in high density of interfaces as well as strong interactions, which lead to generation of tunable thermal, mechanical, and electrical properties in the materials. The nanocomposites prepared by GMA bridging exhibit the remarkable combination of thermal (T d = 342.2 °C, T g = 150.1 °C ), mechanical (E = 7.6 Gpa and H = 0.45 Gpa ) and electrical (σ = 3.15 × 10-5 S/cm) properties. Hence, the conjugation approaches related to GMA bridging facilitate a new paradigm for producing multifunctional polymer nanocomposites having a unique combination of multifunctional properties, which can be potentially used in next-generation polymer-based advanced functional devices.
Collapse
Affiliation(s)
- Payal Mazumdar
- Amity
Institute of Applied Sciences, Amity University, Sector-125, Noida 201313, UP, India
| | | | - Sunita Rattan
- Amity
Institute of Applied Sciences, Amity University, Sector-125, Noida 201313, UP, India
| | | |
Collapse
|
7
|
Singhal P, Mazumdar P, Rattan S. One pot synthesis of free standing highly conductive polymer nanocomposite films: Towards rapid BTX vapor sensor. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Prachi Singhal
- Directorate of Innovation and Technology TransferAmity University Uttar PradeshNoida India
| | - Payal Mazumdar
- Amity Institute of Applied SciencesAmity University Uttar PradeshNoida India
| | - Sunita Rattan
- Amity Institute of Applied SciencesAmity University Uttar PradeshNoida India
| |
Collapse
|
8
|
Singhal P, Rattan S. Swift Heavy Ion Irradiation as a Tool for Homogeneous Dispersion of Nanographite Platelets within the Polymer Matrices: Toward Tailoring the Properties of PEDOT:PSS/Nanographite Nanocomposites. J Phys Chem B 2016; 120:3403-13. [PMID: 26982328 DOI: 10.1021/acs.jpcb.5b11240] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED Performance of the polymer nanocomposites is dependent to a great extent on efficient and homogeneous dispersion of nanoparticles in polymeric matrices. The dispersion of nanographite platelets (NGPs) in polymer matrix is a great challenge because of the inherent inert nature of the NGPs, poor wettability toward polymer matrices, and easy agglomeration due to van der Waals interactions. In the present study, attempts have been made to use a new approach involving the irradiation of polymer nanocomposites through swift heavy ion (SHI) to homogeneously disperse the NGPs within the polymer matrices. Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) ( PEDOT PSS)/nanographite nanocomposite (NC) films prepared by the solution blending method were irradiated with SHI (Ni ion beam, 80 MeV) at a fluence range of 1 × 10(10) to 1 × 10(12) ions/cm(2). XRD studies revealed that ion irradiation results in delamination and better dispersion of NGPs in the irradiated nanocomposite films compared to unirradiated films, which is also depicted through SEM, AFM, TEM, and Raman studies. In the irradiated polymer nanocomposite films, the conformation of PEDOT chains changes from coiled to extended coiled structure, which, along with homogeneously dispersed NGPs in irradiated NCs, shows an excellent synergistic effect facilitating charge transport. The remarkable improvement in conductivity from 1.9 × 10(-2) in unirradiated NCs to 0.45 S/cm in irradiated NCs is observed with marked improvement in sensing the response toward nitroaromatic vapors at room temperature. The temperature induced conductivity studies have been carried out for PEDOT PSS/nanographite NCs to comprehend the charge transport mechanism in NC films using the 3D Mott variable range hopping model also. The study reveals SHI as a novel method, addressing the challenge associated with the dispersion of NGPs within the polymer matrix for their enhanced performance toward various applications.
Collapse
Affiliation(s)
- Prachi Singhal
- Directorate of Innovation and Technology Transfer, Amity University Uttar Pradesh , Sec-125, Noida, India
| | - Sunita Rattan
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh , Sec-125, Noida, India
| |
Collapse
|
9
|
Mazumdar P, Chockalingam S, Rattan S. Strategy to synthesise nano-engineered polymer nanocomposite with a mechanically strong interface: a highly flexible ammonia gas sensor. RSC Adv 2016. [DOI: 10.1039/c6ra14502g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The work reported herein describes a facile strategy for synthesize of a highly flexible and free standing novel polymethyl methacrylate/nanographite platelets nanocomposite (P-NC) film through click chemistry.
Collapse
Affiliation(s)
- Payal Mazumdar
- Amity Institute of Applied Sciences
- Amity University
- Noida
- India
| | | | - Sunita Rattan
- Amity Institute of Applied Sciences
- Amity University
- Noida
- India
| |
Collapse
|