1
|
Doménech-Carbó A, Domínguez I. In situ electrochemical analysis of anthocyanin activation by ROS in blueberries. Electrochem commun 2023. [DOI: 10.1016/j.elecom.2023.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
2
|
Farouil L, Duchaudé Y, Zozo L, Sylvestre M, Lafay F, Marote P, Cebrián-Torrejón G. Cyclic voltammetry of immobilized particles as an alternative pesticide screening method for Aedes aegypti mosquitoes. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
3
|
Matignon L, Lo MM, Monpierre M, Correia MV, Valencia DP, Palmeira-Mello MV, Sylvestre MN, Pruneau L, Sylvestre M, Domenech A, Benfodda Z, Meffre P, Cebrián-Torrejón G. Phytochemical and Biological Study of Trophic Interaction between Pseudosphinx Tetrio L. Larvae and Allamanda Cathartica L. PLANTS (BASEL, SWITZERLAND) 2023; 12:520. [PMID: 36771605 PMCID: PMC9921458 DOI: 10.3390/plants12030520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
In this article, we propose to explore the chemical interaction between Pseudosphinx tetrio L. and Allamanda cathartica L. using different analytical methods, including an innovative electrochemical approach (called electrochemical ecology) and multivariate analysis, and we investigate the potential antimicrobial effects (antibacterial and antifungal activities) of this interaction in order to gain a better understanding of their specific interaction. The analytical study presents a similar chemical profile between the leaves of healthy and herbivorous A. cathartica and the excretions of the caterpillars. The similar analytical profile of the leaves of A. cathartica and the excretions of P. tetrio, and the difference with the caterpillar bodies, suggests a selective excretion of compounds by the caterpillar. The measured antimicrobial activities support the physicochemical tests. The natural products found selectively in the excretions (rather than in the body) could explain the ability of P. tetrio to feed on this toxic Apocynaceae species.
Collapse
Affiliation(s)
- Linda Matignon
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, Fouillole Campus, University of the French West Indies, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Mame Marietou Lo
- CHROME Laboratory, EA7352, University of Nîmes, CEDEX 1, 30021 Nîmes, France
| | - Magneric Monpierre
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Department of Chemistry, Fouillole Campus, University of the French West Indies, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Mauro Vicentini Correia
- Instituto de Química, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Drochss Pettry Valencia
- Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana sede Cali, Calle 18 No. 118-250, Cali 760031, Colombia
| | - Marcos V. Palmeira-Mello
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, Niterói 24020-141, Brazil
| | - Marie-Noëlle Sylvestre
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Department of Chemistry, Fouillole Campus, University of the French West Indies, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Ludovic Pruneau
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Department of Chemistry, Fouillole Campus, University of the French West Indies, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Muriel Sylvestre
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, Fouillole Campus, University of the French West Indies, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Antonio Domenech
- Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Valencia, Spain
| | - Zohra Benfodda
- CHROME Laboratory, EA7352, University of Nîmes, CEDEX 1, 30021 Nîmes, France
| | - Patrick Meffre
- CHROME Laboratory, EA7352, University of Nîmes, CEDEX 1, 30021 Nîmes, France
| | - Gerardo Cebrián-Torrejón
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, Fouillole Campus, University of the French West Indies, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| |
Collapse
|
4
|
Doménech-Carbó A, Dias D. In situ electrochemical monitoring of ROS influence in the dynamics of ascorbic acid and polyphenolic compounds in apple fruits. Food Chem 2021; 374:131818. [PMID: 34915362 DOI: 10.1016/j.foodchem.2021.131818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 12/05/2021] [Indexed: 01/22/2023]
Abstract
In situ recording of the voltammetric profile of different apple (Malus domestica Borkh.) varieties (Golden, Granny Smith, Reineta, Red delicious, Fuji, and Braeburn) without and with ROS generation is reported. The voltammetric response associated to the oxidation of ascorbic acid (AA) and polyphenolic (PPs) components was recorded. The obtained voltammetric profiles were satisfactorily fitted to a theoretical kinetic model consisting of the competing, dual activation pathways of AA and PPs followed by a degradative step. The rate constants for these processes were calculated from voltammetric data revealing significant differences between varieties. The activation pathways as well as the influence of electrochemical ROS generation on it were variety-sensitive while the degradative step was almost variety insensitive and lightly sensitive to ROS generation.
Collapse
Affiliation(s)
- Antonio Doménech-Carbó
- Departament de Química analítca, Universitat de València, Dr. Moliner 50, 46100 Burjassot (València), Spain.
| | - Daiane Dias
- Laboratório de Eletro-Espectro Analítica (LEEA), Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 8, Rio Grande 96203-900, RS, Brazil
| |
Collapse
|
5
|
Fu L, Zheng Y, Wang A, Zhang P, Ding S, Wu W, Zhou Q, Chen F, Zhao S. Identification of medicinal herbs in Asteraceae and Polygonaceae using an electrochemical fingerprint recorded using screen-printed electrode. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Zheng Y, Wang D, Li X, Wang Z, Zhou Q, Fu L, Yin Y, Creech D. Biometric Identification of Taxodium spp. and Their Hybrid Progenies by Electrochemical Fingerprints. BIOSENSORS 2021; 11:403. [PMID: 34677359 PMCID: PMC8534068 DOI: 10.3390/bios11100403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022]
Abstract
The use of electrochemical fingerprints for plant identification is an emerging application in biosensors. In this work, Taxodium ascendens, T. distichum, T. mucronatum, and 18 of their hybrid progenies were collected for this purpose. This is the first attempt to use electrochemical fingerprinting for the identification of plant hybrid progeny. Electrochemical fingerprinting in the leaves of Taxodium spp. was recorded under two conditions. The results showed that the electrochemical fingerprints of each species and progeny possessed very suitable reproducibility. These electrochemical fingerprints represent the electrochemical behavior of electrochemically active substances in leaf tissues under specific conditions. Since these species and progenies are very closely related to each other, it is challenging to identify them directly using a particular electrochemical fingerprinting. Therefore, electrochemical fingerprints measured under different conditions were used to perform pattern recognition. We can identify different species and progenies by locating the features in different pattern maps. We also performed a phylogenetic study with data from electrochemical fingerprinting. The results proved that the electrochemical classification results and the relationship between them are closely related.
Collapse
Affiliation(s)
- Yuhong Zheng
- Jiangsu Engineering Research Center for Taxodium Rich, Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (Z.W.); (Y.Y.)
| | - Da Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (D.W.); (X.L.); (Q.Z.)
| | - Xiaolong Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (D.W.); (X.L.); (Q.Z.)
| | - Ziyang Wang
- Jiangsu Engineering Research Center for Taxodium Rich, Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (Z.W.); (Y.Y.)
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (D.W.); (X.L.); (Q.Z.)
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (D.W.); (X.L.); (Q.Z.)
| | - Yunlong Yin
- Jiangsu Engineering Research Center for Taxodium Rich, Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (Z.W.); (Y.Y.)
| | - David Creech
- Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962, USA;
| |
Collapse
|
7
|
Doménech-Carbó A. Electrochemistry of plants: basic theoretical research and applications in plant science. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Doménech‐Carbó A, Dias D, Donnici M. In vivo
Electrochemical Monitoring of Signaling Transduction of Plant Defense Against Stress in Leaves of
Aloe vera
L. ELECTROANAL 2020. [DOI: 10.1002/elan.202060517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Antonio Doménech‐Carbó
- Departament de Química Analítica Universitat de València Dr. Moliner, 50 46100 Burjassot (València Spain
| | - Daiane Dias
- Laboratório de Eletro-Espectro Analítica (LEEA) Escola de Química e Alimentos Universidade Federal do Rio Grande Av. Itália, km 8 Rio Grande 96203-900 RS Brazil
| | - Margherita Donnici
- Dipartimento di Scienze Molecolari e Nanosistemi Università Cà Foscari Venezia Via Torino 155 30172 Mestre-Venezia Italy
| |
Collapse
|
9
|
da Silveira GD, Di Turo F, Dias D, da Silva JAF. Electrochemical analysis of organic compounds in solid-state: applications of voltammetry of immobilized microparticles in bioanalysis and cultural heritage science. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04720-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Fu L, Wang A, Zhang H, Zhou Q, Chen F, Su W, Yu A, Ji Z, Liu Q. Analysis of chicken breast meat freshness with an electrochemical approach. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
11
|
Fu L, Zheng Y, Zhang P, Zhang H, Wu M, Zhang H, Wang A, Su W, Chen F, Yu J, Cai W, Lin CT. An electrochemical method for plant species determination and classification based on fingerprinting petal tissue. Bioelectrochemistry 2019; 129:199-205. [PMID: 31200249 DOI: 10.1016/j.bioelechem.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/01/2019] [Accepted: 06/01/2019] [Indexed: 11/17/2022]
Abstract
The identification of plant species not only is a hobby but also has important application value in plant resources science. Traditional plant identification often relies on the experience of botanists. The infrageneric identification of plants is easily mistaken due to similarities in organ features. In this work, we propose an electrochemical method to obtain fingerprints of plant petal tissue. Fourteen species of Lycoris were used as a model for validating this methodology. Pattern and color recognition were established for visualization of electrochemical fingerprints recorded after various solvent extractions. In addition, the infrageneric relationships of these Lycoris species were deduced from the electrochemical fingerprints since the type and content of electroactive compounds in plants are controlled by genes. The results indicate that the electrochemical fingerprints of Lycoris petals are correlated with the infrageneric relationships of native Lycoris species.
Collapse
Affiliation(s)
- Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China.
| | - Yuhong Zheng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, Jiangsu Province, PR China.
| | | | - Haoyang Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Mengyao Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Huaiwei Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Aiwu Wang
- Center for Advanced Material Diagnostic Technology, Shenzhen Technology University, Shenzhen 518118, PR China.
| | - Weitao Su
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Fei Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Wen Cai
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| |
Collapse
|
12
|
Doménech-Carbó A, Cervelló-Bulls P, González JM, Soriano P, Estrelles E, Montoya N. Electrochemical monitoring of ROS influence on seedlings and germination response to salinity stress of three species of the tribe Inuleae. RSC Adv 2019; 9:17856-17867. [PMID: 35520594 PMCID: PMC9064681 DOI: 10.1039/c9ra02556a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/28/2019] [Indexed: 01/22/2023] Open
Abstract
Voltammetric data of extracts from inula leaves provide kinetic information on the reactivity of plant components with ROS.
Collapse
Affiliation(s)
| | | | | | - Pilar Soriano
- ICBiBE-Botanic Garden of the University of Valencia
- Valencia
- Spain
| | - Elena Estrelles
- ICBiBE-Botanic Garden of the University of Valencia
- Valencia
- Spain
| | - Noemí Montoya
- Department of Analytical Chemistry
- University of Valencia
- Valencia
- Spain
| |
Collapse
|
13
|
Cebrián-Torrejón G, Doménech-Carbó A, Figadère B, Poupon E, Fournet A. Phytoelectrochemical analysis of Zanthoxylum chiloperone. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:171-175. [PMID: 27995663 DOI: 10.1002/pca.2657] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION An innovative application of the voltammetry of microparticles methodology to characterize the phytochemical composition of extracts of different parts of Zanthoxylum chiloperone var. angustifolium Engl. is described. OBJECTIVE Characterize the phytochemical composition of extracts of different parts of plants by electrochemical methodologies. METHODS The voltammetry of microparticles methodology was applied to alcoholic extracts from leaves, seeds, fruits, roots and stem bark of Zanthoxylum chiloperone. RESULTS In contact with aqueous phosphate buffer, characteristic cathodic signals of its main natural products (canthin-6-one, 5-methoxycanthin-6-one and trans-avicennol) were recorded. The study of the voltammograns allows the estimation of the relative amounts of canthin-6-one, 5-methoxycanthin-6-one and trans-avicennol from the different parts of Zanthoxylum chiloperone. CONCLUSION The voltammetric responses of alcoholic extracts from different parts of Zanthoxylum chiloperone var. angustifolium allows their phytochemical characterization without need of sample pretreatment thus illustrating the capabilities of the voltammetry of microparticles methodology to increase the tools applied to phytochemical analysis. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gerardo Cebrián-Torrejón
- Department de Química Analítica, Universitat de València, Dr. Moliner, 50, 46100 Burjasot (València), Spain
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Antonio Doménech-Carbó
- Department de Química Analítica, Universitat de València, Dr. Moliner, 50, 46100 Burjasot (València), Spain
| | - Bruno Figadère
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Erwan Poupon
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Alain Fournet
- IRD UMR 217, Laboratoire de Pharmacognosie, Faculté de Pharmacie, rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| |
Collapse
|
14
|
Muñiz-Calvo S, Guillamón JM, Domínguez I, Doménech-Carbó A. Detecting and Monitoring the Production of Melatonin and Other Related Indole Compounds in Different Saccharomyces Strains by Solid-State Electrochemical Techniques. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0699-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Ortiz-Miranda AS, König P, Kahlert H, Scholz F, Osete-Cortina L, Doménech-Carbó MT, Doménech-Carbó A. Voltammetric analysis of Pinus needles with physiological, phylogenetic, and forensic applications. Anal Bioanal Chem 2016; 408:4943-52. [DOI: 10.1007/s00216-016-9588-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
|