1
|
Zhao D, Meesane J, Nuntanaranont T, Thuaksubun N, Khangkhamano M. Mimicking Scaffolds for Osteogenesis Based on Poly(vinyl alcohol) Hydrogel with Hard Calcium Phosphate and Soft Silk Fibroin Particle for Bone Regeneration: Molecular Organization, Morphology, Properties, and In Vitro Evaluation. ACS APPLIED BIO MATERIALS 2024; 7:8212-8222. [PMID: 39590884 DOI: 10.1021/acsabm.4c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
In this study, poly(vinyl alcohol) (PVA)/silk fibroin particle (SFP) hydrogel scaffolds are prepared by mixing compound calcium phosphate (CCP) in different weight ratios (0, 4, 8, and 16%) via the repeated freeze-thawing method. The physicochemical characteristics and biological behavior of the hydrogel are evaluated, and the results show a decreased porous structure of the hydrogel composite with a swelling ability upon CCP addition; however, the mechanical strength and degradation rate increase. Cell attachment and growth analyses demonstrate PVA/SFP/CCP as nontoxic to cells. Furthermore, osteogenesis evaluation shows that the group with 8% CCP in PVA/SFP hydrogel exhibits higher cell adhesion and proliferation than other groups. Additionally, the group exhibits better osteogenic performance than the other groups when alkaline phosphatase activity, total protein content, and calcium deposition are compared. Considered as a mixture, the PVA/SFP/CCP hydrogel is promising for bone tissue engineering applications; particularly, PVA/SFP/8% CCP serves as an optimal choice.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Stomatology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Thongchai Nuntanaranont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Nuttawut Thuaksubun
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Matthana Khangkhamano
- Department of Mining and Materials Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
2
|
López-García S, Aznar-Cervantes SD, Pagán A, Llena C, Forner L, Sanz JL, García-Bernal D, Sánchez-Bautista S, Ceballos L, Fuentes V, Melo M, Rodríguez-Lozano FJ, Oñate-Sánchez RE. 3D Graphene/silk fibroin scaffolds enhance dental pulp stem cell osteo/odontogenic differentiation. Dent Mater 2024; 40:431-440. [PMID: 38114344 DOI: 10.1016/j.dental.2023.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/24/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVES The current in vitro study aims to evaluate silk fibroin with and without the addition of graphene as a potential scaffold material for regenerative endodontics. MATERIAL AND METHODS Silk fibroin (SF), Silk fibroin/graphene oxide (SF/GO) and silk fibroin coated with reduced graphene oxide (SF/rGO) scaffolds were prepared (n = 30). The microarchitectures and mechanical properties of scaffolds were evaluated using field emission scanning electron microscopy (FESEM), pore size and water uptake, attenuated total reflectance fourier transformed infrared spectroscopy (ATR-FTIR), Raman spectroscopy and mechanical compression tests. Next, the study analyzed the influence of these scaffolds on human dental pulp stem cell (hDPSC) viability, apoptosis or necrosis, cell adhesion, odontogenic differentiation marker expression and mineralized matrix deposition. The data were analyzed with ANOVA complemented with the Tukey post-hoc test (p < 0.005). RESULTS SEM analysis revealed abundant pores with a size greater than 50 nm on the surface of tested scaffolds, primarily between 50 nm and 600 µm. The average value of water uptake obtained in pure fibroin scaffolds was statistically higher than that of those containing GO or rGO (p < 0.05). ATR-FTIR evidenced that the secondary structures did not present differences between pure fibroin and fibroin coated with graphene oxide, with a similar infrared spectrum in all tested scaffolds. Raman spectroscopy showed a greater number of defects in the links in SF/rGO scaffolds due to the reduction of graphene. In addition, adequate mechanical properties were exhibited by the tested scaffolds. Regarding biological properties, hDPSCs attached to scaffolds were capable of proliferating at a rate similar to the control, without affecting their viability over time. A significant upregulation of ALP, ON and DSPP markers was observed with SF/rGO and SF/GO groups. Finally, SF/GO and SF/rGO promoted a significantly higher mineralization than the control at 21 days. SIGNIFICANCE Data obtained suggested that SF/GO and SF/rGO scaffolds promote hDPSC differentiation at a genetic level, increasing the expression of key osteo/odontogenic markers, and supports the mineralization of the extracellular matrix. However, results from this study are to be interpreted with caution, requiring further in vivo studies to confirm the potential of these scaffolds.
Collapse
Affiliation(s)
- Sergio López-García
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - Salvador D Aznar-Cervantes
- Biotechnology, Genomics and PlantBreedingDepartment, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), La Alberca 30150, Murcia, Spain
| | - Ana Pagán
- Biotechnology, Genomics and PlantBreedingDepartment, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), La Alberca 30150, Murcia, Spain
| | - Carmen Llena
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - Leopoldo Forner
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - José L Sanz
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - David García-Bernal
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Biomedical Research Institute (IMIB), Murcia 30120, Spain
| | | | - Laura Ceballos
- IDIBO Research Group, Area of Stomatology, Health Sciences Faculty, Rey Juan Carlos University, Alcorcón, Madrid, Spain
| | - Victoria Fuentes
- IDIBO Research Group, Area of Stomatology, Health Sciences Faculty, Rey Juan Carlos University, Alcorcón, Madrid, Spain
| | - María Melo
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - Francisco J Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Biomedical Research Institute (IMIB), Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Medicine, University of Murcia, Murcia 30008, Spain.
| | - Ricardo E Oñate-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Biomedical Research Institute (IMIB), Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Medicine, University of Murcia, Murcia 30008, Spain
| |
Collapse
|
3
|
Wang L, Lian J, Xia Y, Guo Y, Xu C, Zhang Y, Xu J, Zhang X, Li B, Zhao B. A study on in vitro and in vivo bioactivity of silk fibroin / nano-hydroxyapatite / graphene oxide composite scaffolds with directional channels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Xu Z, Ma Y, Dai H, Tan S, Han B. Advancements and Applications in the Composites of Silk Fibroin and Graphene-Based Materials. Polymers (Basel) 2022; 14:polym14153110. [PMID: 35956625 PMCID: PMC9370577 DOI: 10.3390/polym14153110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Silk fibroin and three kinds of graphene-based materials (graphene, graphene oxide, and reduced graphene oxide) have been widely investigated in biomedical fields. Recently, the hybrid composites of silk fibroin and graphene-based materials have attracted much attention owing to their combined advantages, i.e., presenting outstanding biocompatibility, mechanical properties, and excellent electrical conductivity. However, maintaining bio-toxicity and biodegradability at a proper level remains a challenge for other applications. This report describes the first attempt to summarize the hybrid composites’ preparation methods, properties, and applications to the best of our knowledge. We strongly believe that this review will open new doors for coming researchers.
Collapse
|
5
|
Ghanbari E, Mehdipour A, Khazaei M, Khoshfeterat AB, Niknafs B. A review of recent advances on osteogenic applications of Silk fibroin as a potential bio-scaffold in bone tissue engineering. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2032707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elham Ghanbari
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Wang L, Nan X, Hou J, Xia Y, Guo Y, Meng K, Xu C, Lian J, Zhang Y, Wang X, Zhao B. Preparation and biological properties of silk fibroin/nano-hydroxyapatite/hyaluronic acid composite scaffold. Biomed Mater 2021; 16. [PMID: 34098538 DOI: 10.1088/1748-605x/ac08aa] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
In this study, the silk fibroin/nano-hydroxyapatite/hyaluronic acid (SF/nHAp/HA) composite scaffolds with different HA contents were developed by blending, cross-linking and freeze-drying, and their physicochemical properties and cell biocompatibilityin vitrowere subsequently studied. It was observed that the molecular conformation of the composite scaffolds was mainly composed of silk I and a small amount of theβ-sheets structure. On enhancing the HA content, the pore size of the scaffold decreased, while the porosity, water absorption, swelling ratio and mechanical properties were observed to increase. In particular, the SF/nHAp/HA scaffold with a 5.0 wt% ratio exhibited the highest water absorption and mechanical properties among the developed materials. In addition, thein vitrocytocompatibility analysis showed that the bone marrow mesenchymal stem cells exhibited excellent cell proliferation and osteogenic differentiation ability on the SF/nHAp/5.0 wt%HA scaffolds, as compared with the other scaffolds. It can be concluded that the developed composite scaffolds represent a promising class of materials for the bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Xiaoru Nan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Jiaxin Hou
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Yijing Xia
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Yanqin Guo
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Kejing Meng
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Changzhen Xu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Jing Lian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Yufang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| |
Collapse
|
7
|
Cheng L, Suresh K S, He H, Rajput RS, Feng Q, Ramesh S, Wang Y, Krishnan S, Ostrovidov S, Camci-Unal G, Ramalingam M. 3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives. Int J Nanomedicine 2021; 16:4289-4319. [PMID: 34211272 PMCID: PMC8239380 DOI: 10.2147/ijn.s311001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.
Collapse
Affiliation(s)
- Lijia Cheng
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Shoma Suresh K
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hongyan He
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Ritu Singh Rajput
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Qiyang Feng
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Saravanan Ramesh
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Yuzhuang Wang
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Sasirekha Krishnan
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Serge Ostrovidov
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
8
|
Nilogal P, Uppine GB, Rayaraddi R, Sanjeevappa HK, Martis LJ, Narayana B, Yallappa S. Conductive In Situ Reduced Graphene Oxide-Silk Fibroin Bionanocomposites. ACS OMEGA 2021; 6:12995-13007. [PMID: 34056450 PMCID: PMC8158836 DOI: 10.1021/acsomega.1c00013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
This research paper describes the fabrication of bionanocomposites (BNCs) based on silk fibroin (SF) and reduced graphene oxide (rGO). The recorded UV-visible (UV-vis) spectra of the sample confirm the reduction of GO to rGO in SF by showing a plasmon resonance band within the wavelength range of 261-268 nm. The X-ray diffraction (XRD) peak at 11.6° corresponding to the GO intensity decreases with increasing reaction time, resulting in rGO in the SF host matrix. The morphological behavior of the SF-rGO BNCs is scrutinized using scanning electron microscopy (SEM), and the images clearly indicate the existence of rGO within the matrix. The increasing amount of GO in the SF shows broken graphene sheets, which can increase the surface roughness and establish a strong physical contact between the SF and rGO nanosheets. The high-resolution transmission electron microscope (HR-TEM) image of the bionanocomposite showed that the formed rGO encompassments of fewer layers are stacked, each with fewer wrinkles and folding. The Raman spectroscopy confirmed the formation of rGO by showing the increased intensity ratio of D to G band (I D/I G) in the bionanocomposite samples. The rGO effect on the electrical conductivity is measured, and the results show that DC conductivity increases from 1.28 × 10-9 to 82.4 × 10-9 S/cm with an increase in the GO content in the SF biopolymer. The investigations demonstrate loss of the insulation property and improved conducting behavior of the SF biopolymer.
Collapse
Affiliation(s)
- Parushuram Nilogal
- Department
of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
| | - Gauthama B. Uppine
- Department
of Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
| | - Ranjana Rayaraddi
- Department
of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
| | - Harisha K. Sanjeevappa
- Department
of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
| | - Lavita J. Martis
- Department
of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
| | - Badiadka Narayana
- Department
of Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
| | - Sangappa Yallappa
- Department
of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
| |
Collapse
|
9
|
Ding X, Huang Y, Li X, Liu S, Tian F, Niu X, Chu Z, Chen D, Liu H, Fan Y. Three-dimensional silk fibroin scaffolds incorporated with graphene for bone regeneration. J Biomed Mater Res A 2021; 109:515-523. [PMID: 32506791 DOI: 10.1002/jbm.a.37034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
Abstract
Porous three-dimensional (3D) silk fibroin (SF) scaffolds were widely applied for bone regeneration and showed excellent biocompatibility and biodegradability. Recently graphene was developed for bone scaffolds due to its osteogenic properties. Thus, we combine the SF and graphene to improve the osteogenic properties of SF scaffolds. In our study, we explored the incorporation of SF scaffolds with graphene to develop osteogenic scaffolds capable of accelerating bone formation. The 3D SF scaffolds were fabricated with different contents of graphene (0, 0.5, and 2%). Fluorescence images showed that the graphene nanosheets were homogeneously dispersed in the SF scaffolds. The addition of graphene affected the microarchitecture of the scaffolds. The G/SF scaffolds were cocultured with rat bone marrow-derived mesenchymal stem cells (rBMSCs) for 21 days. The cell morphology and cell proliferation study suggested that 0 and 0.5% G/SF scaffolds displayed good cell proliferation. In addition, immunofluorescent staining (e.g., osteonectin, osteopontin, and osteocalcin) and ALP activities indicated that the osteogenic properties was more actively exhibited on 0.5% G/SF scaffolds compared with the other groups. Our results indicated that SF scaffolds incorporated with graphene could be an appropriate scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Suting Liu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Feng Tian
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhaowei Chu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Diansheng Chen
- Robot Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
10
|
PC12 cells proliferation and morphological aspects: Inquiry into raffinose-grafted graphene oxide in silk fibroin-based scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111810. [DOI: 10.1016/j.msec.2020.111810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022]
|
11
|
Zhang C, Wang X, Fan S, Lan P, Cao C, Zhang Y. Silk fibroin/reduced graphene oxide composite mats with enhanced mechanical properties and conductivity for tissue engineering. Colloids Surf B Biointerfaces 2021; 197:111444. [DOI: 10.1016/j.colsurfb.2020.111444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022]
|
12
|
Fabrication of graphene/gelatin/chitosan/tricalcium phosphate 3D printed scaffolds for bone tissue regeneration applications. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01615-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Magaz A, Ashton MD, Hathout RM, Li X, Hardy JG, Blaker JJ. Electroresponsive Silk-Based Biohybrid Composites for Electrochemically Controlled Growth Factor Delivery. Pharmaceutics 2020; 12:E742. [PMID: 32784563 PMCID: PMC7463593 DOI: 10.3390/pharmaceutics12080742] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/21/2022] Open
Abstract
Stimuli-responsive materials are very attractive candidates for on-demand drug delivery applications. Precise control over therapeutic agents in a local area is particularly enticing to regulate the biological repair process and promote tissue regeneration. Macromolecular therapeutics are difficult to embed for delivery, and achieving controlled release over long-term periods, which is required for tissue repair and regeneration, is challenging. Biohybrid composites incorporating natural biopolymers and electroconductive/active moieties are emerging as functional materials to be used as coatings, implants or scaffolds in regenerative medicine. Here, we report the development of electroresponsive biohybrid composites based on Bombyx mori silkworm fibroin and reduced graphene oxide that are electrostatically loaded with a high-molecular-weight therapeutic (i.e., 26 kDa nerve growth factor-β (NGF-β)). NGF-β-loaded composite films were shown to control the release of the drug over a 10-day period in a pulsatile fashion upon the on/off application of an electrical stimulus. The results shown here pave the way for personalized and biologically responsive scaffolds, coatings and implantable devices to be used in neural tissue engineering applications, and could be translated to other electrically sensitive tissues as well.
Collapse
Affiliation(s)
- Adrián Magaz
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK;
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Mark D. Ashton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK;
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Xu Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - John G. Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK;
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK
| | - Jonny J. Blaker
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK;
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
14
|
Natural Fibrous Protein for Advanced Tissue Engineering Applications: Focusing on Silk Fibroin and Keratin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:39-49. [PMID: 32602089 DOI: 10.1007/978-981-15-3258-0_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As one of the important branches of natural biopolymer, natural fibrous protein has a lot of advantages including good mechanical properties, excellent biocompatibility, controllable biodegradability, renewability, abundant sources, and so on. Moreover, natural fibrous protein is also a protein that could only be used for structure supporting without any bioactivities, which attracts a lot of attentions in the field of tissue engineering scaffold. This chapter is taking silk fibroin and keratin as model materials of natural fibrous protein, focusing on their protein structure, chemical compositions, processing and extraction methods, chemical modification methods, and their applications in tissue engineering through advanced manufacturing.
Collapse
|
15
|
Sivashankari PR, Prabaharan M. Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering. Int J Biol Macromol 2019; 146:222-231. [PMID: 31891702 DOI: 10.1016/j.ijbiomac.2019.12.219] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/28/2019] [Accepted: 12/24/2019] [Indexed: 01/19/2023]
Abstract
Three-dimensional (3D) porous scaffolds based on agarose/chitosan/graphene oxide (ACGO) composite were prepared by the freeze-drying technique. The prepared scaffolds were characterized by FTIR, XRD and SEM analysis. The effect of graphene oxide (GO) on the physicochemical and biological properties of the composite scaffolds was evaluated in terms of porosity, swelling, water retention, compressive strength, enzymatic degradation, cytotoxicity and cell attachment behaviors. The ACGO composite scaffolds exhibited the well-defined interconnected pores with rough surface morphology. The porosity, swelling, water retention ability and compressive strength of the composite scaffolds increased with the increase in GO content, while the degradation rate of the scaffolds decreased with the addition of GO. The composite scaffolds showed adequate hemocompatibility and Vero cell proliferation ability. Cell attachment studies demonstrated that GO present in the composite scaffolds provided a favorable environment for cell attachment and proliferation. These results suggest that ACGO composite scaffolds could be reliable and appropriate for tissue engineering applications.
Collapse
Affiliation(s)
- P R Sivashankari
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India
| | - M Prabaharan
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India.
| |
Collapse
|
16
|
Sun J, Shakya S, Gong M, Liu G, Wu S, Xiang Z. Combined Application of Graphene‐Family Materials and Silk Fibroin in Biomedicine. ChemistrySelect 2019. [DOI: 10.1002/slct.201804034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiachen Sun
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Sujan Shakya
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Min Gong
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Guoming Liu
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Shuang Wu
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Zhou Xiang
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
- Division of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan University Chengdu 610041 P. R. China
| |
Collapse
|
17
|
Asadi H, Ghaee A, Nourmohammadi J, Mashak A. Electrospun zein/graphene oxide nanosheet composite nanofibers with controlled drug release as antibacterial wound dressing. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1552861] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hamid Asadi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Arezou Mashak
- Department of novel drug delivery systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
18
|
Li K, Li P, Fan Y. The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications. J Mater Chem B 2019; 7:6890-6913. [DOI: 10.1039/c9tb01733j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The assembly of silk fibroin and graphene-based nanomaterials would present fantastic properties and functions via optimizing the interaction between each other, and can be processed into various formats to tailor specific biomedical applications.
Collapse
Affiliation(s)
- Kun Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Ping Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Yubo Fan
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| |
Collapse
|
19
|
Cheng X, Wan Q, Pei X. Graphene Family Materials in Bone Tissue Regeneration: Perspectives and Challenges. NANOSCALE RESEARCH LETTERS 2018; 13:289. [PMID: 30229504 PMCID: PMC6143492 DOI: 10.1186/s11671-018-2694-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/28/2018] [Indexed: 02/05/2023]
Abstract
We have witnessed abundant breakthroughs in research on the bio-applications of graphene family materials in current years. Owing to their nanoscale size, large specific surface area, photoluminescence properties, and antibacterial activity, graphene family materials possess huge potential for bone tissue engineering, drug/gene delivery, and biological sensing/imaging applications. In this review, we retrospect recent progress and achievements in graphene research, as well as critically analyze and discuss the bio-safety and feasibility of various biomedical applications of graphene family materials for bone tissue regeneration.
Collapse
Affiliation(s)
- Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| |
Collapse
|
20
|
Prasadh S, Suresh S, Wong R. Osteogenic Potential of Graphene in Bone Tissue Engineering Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1430. [PMID: 30110908 PMCID: PMC6120034 DOI: 10.3390/ma11081430] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/01/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Scaffolds are physical substrates for cell attachments, proliferation, and differentiation, ultimately leading to tissue regeneration. Current literature validates tissue engineering as an emerging tool for bone regeneration. Three-dimensionally printed natural and synthetic biomaterials have been traditionally used for tissue engineering. In recent times, graphene and its derivatives are potentially employed for constructing bone tissue engineering scaffolds because of their osteogenic and regenerative properties. Graphene is a synthetic atomic layer of graphite with SP2 bonded carbon atoms that are arranged in a honeycomb lattice structure. Graphene can be combined with natural and synthetic biomaterials to enhance the osteogenic potential and mechanical strength of tissue engineering scaffolds. The objective of this review is to focus on the most recent studies that attempted to explore the salient features of graphene and its derivatives. Perhaps, a thorough understanding of the material science can potentiate researchers to use this novel substitute to enhance the osteogenic and biological properties of scaffold materials that are routinely used for bone tissue engineering.
Collapse
Affiliation(s)
- Somasundaram Prasadh
- Faculty of Dentistry, National University of Singapore, 1 Lower Kent Ridge Road, Singapore 119083, Singapore.
| | - Santhosh Suresh
- Faculty of Dentistry, National University of Singapore, 1 Lower Kent Ridge Road, Singapore 119083, Singapore.
| | - Raymond Wong
- Faculty of Dentistry, National University of Singapore, 1 Lower Kent Ridge Road, Singapore 119083, Singapore.
| |
Collapse
|
21
|
Balu R, Reeder S, Knott R, Mata J, de Campo L, Dutta NK, Choudhury NR. Tough Photocrosslinked Silk Fibroin/Graphene Oxide Nanocomposite Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9238-9251. [PMID: 29989819 DOI: 10.1021/acs.langmuir.8b01141] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of protein-based hydrogels for tissue engineering applications is often limited by their mechanical properties. Herein, we present the facile fabrication of tough regenerated silk fibroin (RSF)/graphene oxide (GO) nanocomposite hydrogels by a photochemical cross-linking method. The RSF/GO composite hydrogels demonstrated soft and adhesive properties during initial stages of photocrosslinking (<2 min), which is not observed for the pristine RSF hydrogel, and rendered a tough and nonadhesive hydrogel upon complete cross-linking (10 min). The composite hydrogels exhibited superior tensile mechanical properties, increased β-sheet content, and decreased chain mobility compared to that of the pristine RSF hydrogels. The composite hydrogels demonstrated Young's modulus as high as ∼8 MPa, which is significantly higher than native cartilage (∼1.5 MPa), and tensile toughness as high as ∼2.4 MJ/m3, which is greater than that of electroactive polymer muscles and at par with RSF/GO composite membranes fabricated by layer-by-layer assembly. Small-angle scattering study reveals the hierarchical structure of photocrosslinked RSF hydrogels to comprise randomly distributed water-poor (hydrophobic) and water-rich (hydrophilic) regions at the nanoscale, whereas water pores and channels exhibiting fractal-like characteristics at the microscale. The size of hydrophobic domain (containing β-sheets) was observed to increase slightly with GO incorporation and/or alcohol post-treatment, whereas the size of the hydrophilic domain (intersheet distance containing random coils) was observed to increase significantly, which influences/affects water uptake capacity, cross-link density, and mechanical properties of hydrogels. The presented results have implications for both fundamental understanding of the structure-property relationship of RSF-based hydrogels and their technological applications.
Collapse
Affiliation(s)
- Rajkamal Balu
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Shaina Reeder
- School of Chemical Engineering , University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Robert Knott
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organisation , Sydney , New South Wales 2232 , Australia
| | - Jitendra Mata
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organisation , Sydney , New South Wales 2232 , Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organisation , Sydney , New South Wales 2232 , Australia
| | - Naba Kumar Dutta
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | | |
Collapse
|
22
|
Fabrication of porous three-dimensional fibroin structures through a freezing process. J Appl Polym Sci 2018. [DOI: 10.1002/app.46537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Preparation and characterization of three-dimensional scaffolds based on hydroxypropyl chitosan-graft-graphene oxide. Int J Biol Macromol 2018; 110:522-530. [DOI: 10.1016/j.ijbiomac.2017.11.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 01/25/2023]
|
24
|
Zhang C, Shao H, Luo J, Hu X, Zhang Y. Structure and interaction of silk fibroin and graphene oxide in concentrated solution under shear. Int J Biol Macromol 2018; 107:2590-2597. [DOI: 10.1016/j.ijbiomac.2017.10.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
|
25
|
Shin YC, Song SJ, Hong SW, Oh JW, Hwang YS, Choi YS, Han DW. Graphene-Functionalized Biomimetic Scaffolds for Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:73-89. [PMID: 30471027 DOI: 10.1007/978-981-13-0445-3_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Graphene is a two-dimensional atomic layer of graphite, where carbon atoms are assembled in a honeycombed lattice structure. Recently, graphene family nanomaterials, including pristine graphene, graphene oxide and reduced graphene oxide, have increasingly attracted a great deal of interest from researchers in a variety of science, engineering and industrial fields because of their unique structural and functional features. In particular, extensive studies have been actively conducted in the biomedical and related fields, including multidisciplinary and emerging areas, as their stimulating effects on cell behaviors have been becoming an increasing concern. Herein, we are attempting to summarize some of recent findings in the fields of tissue regeneration concerning the graphene family nanomaterial-functionalized biomimetic scaffolds, and to provide the promising perspectives for the possible applications of graphene family nanomaterial.
Collapse
Affiliation(s)
- Yong Cheol Shin
- Research Center for Energy Convergence Technology, Pusan National University, Busan, South Korea
| | - Su-Jin Song
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, South Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, South Korea
| | - Jin-Woo Oh
- Department of Nanoenergy Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, South Korea
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Yu Suk Choi
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, South Korea.
| |
Collapse
|
26
|
Li H, Hu C, Yu H, Chen C. Chitosan composite scaffolds for articular cartilage defect repair: a review. RSC Adv 2018; 8:3736-3749. [PMID: 35542907 PMCID: PMC9077838 DOI: 10.1039/c7ra11593h] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/26/2017] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage (AC) defects lack the ability to self-repair due to their avascular nature and the declined mitotic ability of mature chondrocytes. To date, cartilage tissue engineering using implanted scaffolds containing cells or growth factors is the most promising defect repair method. Scaffolds for cartilage tissue engineering have been comprehensively researched. As a promising scaffold biomaterial for AC defect repair, the properties of chitosan are summarized in this review. Strategies to composite chitosan with other materials, such as polymers (including collagen, gelatin, alginate, silk fibroin, poly-caprolactone, and poly-lactic acid) and bioceramics (including calcium phosphate, calcium polyphosphate, and hydroxyapatite) are presented. Methods to manufacture three-dimensional porous structures to support cell attachment and nutriment exchange have also been included. Properties of chitosan/polymer and chitosan/bioceramic composite scaffolds for articular cartilage defect repair are reviewed.![]()
Collapse
Affiliation(s)
- Huijun Li
- Shenzhen Research Institute of Shandong University
- Shenzhen 518057
- P. R. China
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University)
- Ministry of Education
| | - Cheng Hu
- Shenzhen Research Institute of Shandong University
- Shenzhen 518057
- P. R. China
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education)
- School of Materials Science and Engineering
| | - Huijun Yu
- Shenzhen Research Institute of Shandong University
- Shenzhen 518057
- P. R. China
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University)
- Ministry of Education
| | - Chuanzhong Chen
- Shenzhen Research Institute of Shandong University
- Shenzhen 518057
- P. R. China
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education)
- School of Materials Science and Engineering
| |
Collapse
|
27
|
P A, K V, M S, T G, K R, P N S, Sukumaran A. Removal of toxic heavy metal lead (II) using chitosan oligosaccharide-graft-maleic anhydride/polyvinyl alcohol/silk fibroin composite. Int J Biol Macromol 2017; 104:1469-1482. [PMID: 28539265 DOI: 10.1016/j.ijbiomac.2017.05.111] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/22/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
The present work was aimed to investigate the efficiency of novel chitosan oligosaccharide-graft-maleic anhydride(COS-g-MAH)/Polyvinyl alcohol (PVA)/silk fibroin (SF) composite for removing the toxic heavy metal lead (II) ion from aqueous solution by batch adsorption studies. Initially the chitosan oligosaccharide-graft-maleic anhydride copolymer has been prepared by utilizing ceric ammonium nitrate as an initiator and the optimised graft copolymer was then used for synthesizing COS-g-MAH/PVA/SF composite. The prepared samples were analyzed through FTIR and XRD studies. The FTIR results indicate that the grafted chitosan oligosaccharide copolymer was mixed homogeneously with silk fibroin and polyvinyl alcohol through intermolecular hydrogen bonding. The XRD results elucidate the changes in the crystalline behaviour of the prepared COS-g-MAH/PVA/silk fibroin composite. Both FTIR and XRD results revealed a strong interaction among COS-g-MAH, PVA and silk fibroin components. To evaluate the adsorption potential of the synthesized composite, the parameters such as pH, adsorbent dosage, contact time and initial Pb(II)ion concentration was investigated. The adsorption isotherms of Pb(II) could be described very well by Langmuir model and the kinetic results revealed that pseudo second order kinetics shows a better fit. This work provides a practical and high-efficient method for water treatment at moderate concentration of toxic heavy metals.
Collapse
Affiliation(s)
- Ajitha P
- Department of Chemistry, D.K.M. College for Women, Vellore, Tamil Nadu, India
| | - Vijayalakshmi K
- Department of Chemistry, D.K.M. College for Women, Vellore, Tamil Nadu, India
| | - Saranya M
- Department of Chemistry, D.K.M. College for Women, Vellore, Tamil Nadu, India
| | - Gomathi T
- Department of Chemistry, D.K.M. College for Women, Vellore, Tamil Nadu, India
| | - Rani K
- Department of Chemistry, D.K.M. College for Women, Vellore, Tamil Nadu, India
| | - Sudha P N
- Department of Chemistry, D.K.M. College for Women, Vellore, Tamil Nadu, India.
| | - Anil Sukumaran
- Division of Periodontics, Department of PDS, College of Dentistry, Prince Sattam Bin Abdulaziz University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Dual growth factor loaded nonmulberry silk fibroin/carbon nanofiber composite 3D scaffolds for in vitro and in vivo bone regeneration. Biomaterials 2017; 136:67-85. [DOI: 10.1016/j.biomaterials.2017.05.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/24/2017] [Accepted: 05/07/2017] [Indexed: 12/19/2022]
|
29
|
Li X, Lin K, Wang Z. Enhanced growth and osteogenic differentiation of MC3T3-E1 cells on Ti6Al4V alloys modified with reduced graphene oxide. RSC Adv 2017. [DOI: 10.1039/c6ra25832h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphene and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), have been considered as promising candidates in tissue regeneration.
Collapse
Affiliation(s)
- Xiaojing Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Department of Oral Implant
- School of Stomatology
- Tongji University
- Shanghai
| | - Kaili Lin
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- School of Stomatology
- Tongji University
- Shanghai
- China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Department of Oral Implant
- School of Stomatology
- Tongji University
- Shanghai
| |
Collapse
|