1
|
Forbot N, Bolibok P, Wiśniewski M, Roszek K. Carbonaceous Nanomaterials-Mediated Defense Against Oxidative Stress. Mini Rev Med Chem 2020; 20:294-307. [PMID: 31738152 DOI: 10.2174/1389557519666191029162150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/12/2019] [Accepted: 08/21/2019] [Indexed: 11/22/2022]
Abstract
The concept of nanoscale materials and their applications in industrial technologies, consumer goods, as well as in novel medical therapies has rapidly escalated in the last several years. Consequently, there is a critical need to understand the mechanisms that drive nanomaterials biocompatibility or toxicity to human cells and tissues. The ability of nanomaterials to initiate cellular pathways resulting in oxidative stress has emerged as a leading hypothesis in nanotoxicology. Nevertheless, there are a few examples revealing another face of nanomaterials - they can alleviate oxidative stress via decreasing the level of reactive oxygen species. The fundamental structural and physicochemical properties of carbonaceous nanomaterials that govern these anti-oxidative effects are discussed in this article. The signaling pathways influenced by these unique nanomaterials, as well as examples of their applications in the biomedical field, e.g. cell culture, cell-based therapies or drug delivery, are presented. We anticipate this emerging knowledge of intrinsic anti-oxidative properties of carbon nanomaterials to facilitate the use of tailored nanoparticles in vivo.
Collapse
Affiliation(s)
- Natalia Forbot
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paulina Bolibok
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
2
|
Deline AR, Frank BP, Smith CL, Sigmon LR, Wallace AN, Gallagher MJ, Goodwin DG, Durkin DP, Fairbrother DH. Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes. Chem Rev 2020; 120:11651-11697. [DOI: 10.1021/acs.chemrev.0c00351] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alyssa R. Deline
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Benjamin P. Frank
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Casey L. Smith
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Leslie R. Sigmon
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Alexa N. Wallace
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Miranda J. Gallagher
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - David G. Goodwin
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Durkin
- Department of Chemistry, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - D. Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Liu YJ, Fan XY, Zhang DD, Xia YZ, Hu YJ, Jiang FL, Zhou FL, Liu Y. Dual Inhibition of Pyruvate Dehydrogenase Complex and Respiratory Chain Complex Induces Apoptosis by a Mitochondria-Targeted Fluorescent Organic Arsenical in vitro and in vivo. ChemMedChem 2020; 15:552-558. [PMID: 32101363 DOI: 10.1002/cmdc.201900686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Based on the potential therapeutic value in targeting mitochondria and the fluorophore tracing ability, a fluorescent mitochondria-targeted organic arsenical PDT-PAO-F16 was fabricated, which not only visualized the cellular distribution, but also exerted anti-cancer activity in vitro and in vivo via targeting pyruvate dehydrogenase complex (PDHC) and respiratory chain complexes in mitochondria. In details, PDT-PAO-F16 mainly accumulated into mitochondria within hours and suppressed the activity of PDHC resulting in the inhibition of ATP synthesis and thermogenesis disorder. Moreover, the suppression of respiratory chain complex I and IV accelerated the mitochondrial dysfunction leading to caspase family-dependent apoptosis. In vivo, the acute promyelocytic leukemia was greatly alleviated in the PDT-PAO-F16 treated group in APL mice model. Our results demonstrated the organic arsenical precursor with fluorescence imaging and target-anticancer efficacy is a promising anticancer drug.
Collapse
Affiliation(s)
- Yu-Jiao Liu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xiao-Yang Fan
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Dong-Dong Zhang
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yin-Zheng Xia
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yan-Jun Hu
- College of Chemistry and Materials Science, Nanning Normal University, Nanning, 530001, China
| | - Feng-Lei Jiang
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Fu-Ling Zhou
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yi Liu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.,College of Chemistry and Materials Science, Nanning Normal University, Nanning, 530001, China.,School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
4
|
Xiang X, Gao T, Zhang BR, Jiang FL, Liu Y. Surface functional groups affect CdTe QDs behavior at mitochondrial level. Toxicol Res (Camb) 2018; 7:1071-1080. [PMID: 30542601 DOI: 10.1039/c8tx00160j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022] Open
Abstract
Quantum dots (QDs) are used in the bio-medical area because of their excellent optical properties. Their biomedical utilization has remained a serious biosecurity concern. Cytotoxicity experiments have shown that QD toxicity is connected to the properties of the QDs. In this paper, the toxicity of QDs was studied from the aspect of surface functional groups at the mitochondrial level. Three types of ligands, thioglycollic acid (TGA), mercaptoethylamine (MEA) and l-cysteine (l-Cys), which have similar structures but different functional groups were used to coat CdTe QDs. The effects of the three types of CdTe QDs on mitochondria were then observed. The experimental results showed the three types of CdTe QDs could impair mitochondrial respiration, destroy membrane potential and induce mitochondrial swelling. Interestingly, MEA-CdTe QDs showed similar effects on membrane potential and mitochondrial swelling as did l-Cys-CdTe QDs, while TGA-CdTe QDs showed stronger effects than that of the two other QDs. Moreover, the three types of CdTe QDs showed significantly different effects on mitochondrial membrane fluidity. MEA-CdTe QDs decreased mitochondrial membrane fluidity, l-Cys-CdTe QDs showed no obvious influence on mitochondrial membrane fluidity and TGA-CdTe QDs increased mitochondrial membrane fluidity. The interaction mechanism of CdTe QDs on mitochondrial permeability transition (MPT) pores as well as Cd2+ release by CdTe QDs were checked to determine the reason for their different effects on mitochondria. The results showed that the impact of the three types of CdTe QDs on mitochondria was not only related to the released metal ion, but also to their interaction with MPT pore proteins. This work emphasizes the importance of surface functional groups in the behavior of CdTe QDs at the sub-cellular level.
Collapse
Affiliation(s)
- Xun Xiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; ; Tel: +86-27-68756667
| | - Tao Gao
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; ; Tel: +86-27-68756667
| | - Bo-Rui Zhang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; ; Tel: +86-27-68756667
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; ; Tel: +86-27-68756667
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; ; Tel: +86-27-68756667.,College of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , PR China.,College of Chemistry and Material Science , Guangxi Teachers Education University , Nanning , 530001 , PR China
| |
Collapse
|
5
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Irwin MH, Kanara I, Pinkert CA, Powers WR, Steliou K, Vavvas DG, Kodukula K. Epigenetic Treatment of Neurodegenerative Ophthalmic Disorders: An Eye Toward the Future. Biores Open Access 2017; 6:169-181. [PMID: 29291141 PMCID: PMC5747116 DOI: 10.1089/biores.2017.0036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Eye disease is one of the primary medical conditions that requires attention and therapeutic intervention in ageing populations worldwide. Further, the global burden of diabetes and obesity, along with heart disease, all lead to secondary manifestations of ophthalmic distress. Therefore, there is increased interest in developing innovative new approaches that target various mechanisms and sequelae driving conditions that result in adverse vision. The research challenge is even greater given that the terrain of eye diseases is difficult to landscape into a single therapeutic theme. This report addresses the burden of eye disease due to mitochondrial dysfunction, including antioxidant, autophagic, epigenetic, mitophagic, and other cellular processes that modulate the biomedical end result. In this light, we single out lipoic acid as a potent known natural activator of these pathways, along with alternative and potentially more effective conjugates, which together harness the necessary potency, specificity, and biodistribution parameters required for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Michael H. Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | | | - Carl A. Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Krishna Kodukula
- ShangPharma Innovation, Inc., South San Francisco, California
- PhenoMatriX, Inc., Natick, Massachusetts
- Bridgewater College, Bridgewater, Virginia
| |
Collapse
|
6
|
González-Durruthy M, Werhli AV, Seus V, Machado KS, Pazos A, Munteanu CR, González-Díaz H, Monserrat JM. Decrypting Strong and Weak Single-Walled Carbon Nanotubes Interactions with Mitochondrial Voltage-Dependent Anion Channels Using Molecular Docking and Perturbation Theory. Sci Rep 2017; 7:13271. [PMID: 29038520 PMCID: PMC5643473 DOI: 10.1038/s41598-017-13691-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/25/2017] [Indexed: 01/30/2023] Open
Abstract
The current molecular docking study provided the Free Energy of Binding (FEB) for the interaction (nanotoxicity) between VDAC mitochondrial channels of three species (VDAC1-Mus musculus, VDAC1-Homo sapiens, VDAC2-Danio rerio) with SWCNT-H, SWCNT-OH, SWCNT-COOH carbon nanotubes. The general results showed that the FEB values were statistically more negative (p < 0.05) in the following order: (SWCNT-VDAC2-Danio rerio) > (SWCNT-VDAC1-Mus musculus) > (SWCNT-VDAC1-Homo sapiens) > (ATP-VDAC). More negative FEB values for SWCNT-COOH and OH were found in VDAC2-Danio rerio when compared with VDAC1-Mus musculus and VDAC1-Homo sapiens (p < 0.05). In addition, a significant correlation (0.66 > r2 > 0.97) was observed between n-Hamada index and VDAC nanotoxicity (or FEB) for the zigzag topologies of SWCNT-COOH and SWCNT-OH. Predictive Nanoparticles-Quantitative-Structure Binding-Relationship models (nano-QSBR) for strong and weak SWCNT-VDAC docking interactions were performed using Perturbation Theory, regression and classification models. Thus, 405 SWCNT-VDAC interactions were predicted using a nano-PT-QSBR classifications model with high accuracy, specificity, and sensitivity (73–98%) in training and validation series, and a maximum AUROC value of 0.978. In addition, the best regression model was obtained with Random Forest (R2 of 0.833, RMSE of 0.0844), suggesting an excellent potential to predict SWCNT-VDAC channel nanotoxicity. All study data are available at https://doi.org/10.6084/m9.figshare.4802320.v2.
Collapse
Affiliation(s)
- Michael González-Durruthy
- Institute of Biological Sciences (ICB)- Federal University of Rio Grande - FURG, Postgraduate Program in Physiological Sciences, Cx. P. 474, CEP 96200-970, Rio Grande, RS, Brazil.
| | - Adriano V Werhli
- Center of Computational Sciences (C3)- Federal University of Rio Grande - FURG, Cx. P. 474, CEP 96200-970, Rio Grande, RS, Brazil
| | - Vinicius Seus
- Center of Computational Sciences (C3)- Federal University of Rio Grande - FURG, Cx. P. 474, CEP 96200-970, Rio Grande, RS, Brazil
| | - Karina S Machado
- Center of Computational Sciences (C3)- Federal University of Rio Grande - FURG, Cx. P. 474, CEP 96200-970, Rio Grande, RS, Brazil
| | - Alejandro Pazos
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), A Coruña, 15006, Spain.,RNASA-IMEDIR, Computer Science Faculty, University of A Coruña, Campus de Elviña s/n, 15071, A Coruña, Spain
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruña, Campus de Elviña s/n, 15071, A Coruña, Spain
| | - Humberto González-Díaz
- Department of Organic Chemistry II, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - José M Monserrat
- Institute of Biological Sciences (ICB)- Federal University of Rio Grande - FURG, Postgraduate Program in Physiological Sciences, Cx. P. 474, CEP 96200-970, Rio Grande, RS, Brazil
| |
Collapse
|
7
|
Xiang X, Wu C, Zhang BR, Gao T, Zhao J, Ma L, Jiang FL, Liu Y. The relationship between the length of surface ligand and effects of CdTe quantum dots on the physiological functions of isolated mitochondria. CHEMOSPHERE 2017; 184:1108-1116. [PMID: 28672691 DOI: 10.1016/j.chemosphere.2017.06.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
The potential toxicity of Quantum dots (QDs) should be assessed comprehensively for their fast spreading applications. Many studies have shown the toxicity of QDs is associated with their surface ligands. In this work, two analog ligands with one carbon difference, 2-mercaptoacetic acid (TGA) and 3-mercaptopropionic acid (MPA) were used as coating materials in the syntheses of two types of CdTe QDs with similar physicochemical properties. Then the biological effects of QDs on isolated mitochondria were studied. It was found that the two types of QDs could impair mitochondrial respiration and induce mitochondrial permeability transition (MPT). However, as compared with TGA-CdTe QDs, MPA-CdTe QDs had a stronger effect on MPT. The weaker effect of TGA-CdTe QDs on MPT might be owing to their better stability and thus less amount of released Cd2+, which could be further explained by the stronger affinity between the ligand (TGA) and the cadmium complexes in the crystal growth of QDs. These results highlighted the importance of ligands responsible for the toxicity of QDs at the sub-cellular level.
Collapse
Affiliation(s)
- Xun Xiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Can Wu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Bo-Rui Zhang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Tao Gao
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jie Zhao
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Long Ma
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
8
|
González-Durruthy M, Alberici LC, Curti C, Naal Z, Atique-Sawazaki DT, Vázquez-Naya JM, González-Díaz H, Munteanu CR. Experimental-Computational Study of Carbon Nanotube Effects on Mitochondrial Respiration: In Silico Nano-QSPR Machine Learning Models Based on New Raman Spectra Transform with Markov-Shannon Entropy Invariants. J Chem Inf Model 2017; 57:1029-1044. [PMID: 28414908 DOI: 10.1021/acs.jcim.6b00458] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study of selective toxicity of carbon nanotubes (CNTs) on mitochondria (CNT-mitotoxicity) is of major interest for future biomedical applications. In the current work, the mitochondrial oxygen consumption (E3) is measured under three experimental conditions by exposure to pristine and oxidized CNTs (hydroxylated and carboxylated). Respiratory functional assays showed that the information on the CNT Raman spectroscopy could be useful to predict structural parameters of mitotoxicity induced by CNTs. The in vitro functional assays show that the mitochondrial oxidative phosphorylation by ATP-synthase (or state V3 of respiration) was not perturbed in isolated rat-liver mitochondria. For the first time a star graph (SG) transform of the CNT Raman spectra is proposed in order to obtain the raw information for a nano-QSPR model. Box-Jenkins and perturbation theory operators are used for the SG Shannon entropies. A modified RRegrs methodology is employed to test four regression methods such as multiple linear regression (LM), partial least squares regression (PLS), neural networks regression (NN), and random forest (RF). RF provides the best models to predict the mitochondrial oxygen consumption in the presence of specific CNTs with R2 of 0.998-0.999 and RMSE of 0.0068-0.0133 (training and test subsets). This work is aimed at demonstrating that the SG transform of Raman spectra is useful to encode CNT information, similarly to the SG transform of the blood proteome spectra in cancer or electroencephalograms in epilepsy and also as a prospective chemoinformatics tool for nanorisk assessment. All data files and R object models are available at https://dx.doi.org/10.6084/m9.figshare.3472349 .
Collapse
Affiliation(s)
| | | | | | | | | | - José M Vázquez-Naya
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna , Campus de Elviña s/n, 15071 A Coruña, Spain
| | - Humberto González-Díaz
- Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country UPV/EHU , 48940, Leioa, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science , 48011, Bilbao, Bizkaia, Spain
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna , Campus de Elviña s/n, 15071 A Coruña, Spain.,Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC) , A Coruña, 15006, Spain
| |
Collapse
|