1
|
Saw MJ, Nguyen MT, Kunisada Y, Tokunaga T, Yonezawa T. Anisotropic Growth of Copper Nanorods Mediated by Cl - Ions. ACS OMEGA 2022; 7:7414-7420. [PMID: 35252731 PMCID: PMC8892852 DOI: 10.1021/acsomega.2c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Anisotropic growth to form Cu particles of rod and wire shapes has been obtained typically in a complex system that involves both organic capping agents and Cl- ions. However, the sole effect of Cl- ions on the formation of Cu wires has yet to be fully understood, especially in an organic system. This present work determines the effect of Cl- ions on the morphologies of Cu particles in an organic phase without any capping agents. The results revealed that anisotropic Cu rods could be grown with the sole presence of Cl- ions. The rods have the (011) facets as the long axis, the (111) facets as the tip, and the (100) facets as the side surface. By increasing the Cl- ion concentration, more Cu atoms contributed to the formation of Cu rods and the kinetic growth of the length and the diameter of the rods varied. This suggests that Cl- ions have preferential adsorption on the (100) Cu surfaces to promote the anisotropic growth of Cu. Meanwhile, the adsorption of Cl- to the (111) and (100) surfaces at high Cl- concentrations regulates the relative growth of the particle length and diameter.
Collapse
Affiliation(s)
- Min Jia Saw
- Division
of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Mai Thanh Nguyen
- Division
of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Yuji Kunisada
- Center
for Advanced Research of Energy
and Materials, Faculty of Engineering, Hokkaido
University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Tomoharu Tokunaga
- Department
of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tetsu Yonezawa
- Division
of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| |
Collapse
|
2
|
Synthesis of Au–Cu Alloy Nanoparticles as Peroxidase Mimetics for H2O2 and Glucose Colorimetric Detection. Catalysts 2021. [DOI: 10.3390/catal11030343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The detection of hydrogen peroxide (H2O2) is essential in many research fields, including medical diagnosis, food safety, and environmental monitoring. In this context, Au-based bimetallic alloy nanomaterials have attracted increasing attention as an alternative to enzymes due to their superior catalytic activity. In this study, we report a coreduction synthesis of gold–copper (Au–Cu) alloy nanoparticles in aqueous phase. By controlling the amount of Au and Cu precursors, the Au/Cu molar ratio of the nanoparticles can be tuned from 1/0.1 to 1/2. The synthesized Au–Cu alloy nanoparticles show good peroxidase-like catalytic activity and high selectivity for the H2O2-mediated oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB, colorless) to TMB oxide (blue). The Au–Cu nanoparticles with an Au/Cu molar ratio of 1/2 exhibit high catalytic activity in the H2O2 colorimetric detection, with a limit of detection of 0.141 μM in the linear range of 1–10 μM and a correlation coefficient R2 = 0.991. Furthermore, the Au–Cu alloy nanoparticles can also efficiently detect glucose in the presence of glucose oxidase (GOx), and the detection limit is as low as 0.26 μM.
Collapse
|
3
|
Facile Aqueous-Phase Synthesis of Bimetallic (AgPt, AgPd, and CuPt) and Trimetallic (AgCuPt) Nanoparticles. MATERIALS 2020; 13:ma13020254. [PMID: 31935999 PMCID: PMC7013979 DOI: 10.3390/ma13020254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 11/19/2022]
Abstract
Multi-metallic nanoparticles continue to attract attention, due to their great potential in various applications. In this paper, we report a facile aqueous-phase synthesis for multi-metallic nanoparticles, including AgPt, AgPd, CuPt, and AgCuPt, by a co-reduction method within a short reaction time of 10 min. The atomic ratio of bimetallic nanoparticles was easily controlled by varying the ratio of each precursor. In addition, we found that AgCuPt trimetallic nanoparticles had a core-shell structure with an Ag core and CuPt shell.
Collapse
|
4
|
Yokoyama S, Kimura H, Oikawa H, Motomiya K, Jeyadevan B, Takahashi H. Surface treatment of Cu nanowires using hydroxy acids to form oxide-free Cu junctions for high-performance transparent conductive films. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Tang Z, Han GH, Jung E, Seo MG, Lee KY, Kim WS, Yu T. Synthesis of Cu-Pd nanoplates and their catalytic performance for H2O2 generation reaction. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Tang Z, Kwon H, Yi M, Kim K, Han JW, Kim WS, Yu T. Role of Halide Ions for Controlling Morphology of Copper Nanocrystals in Aqueous Solution. ChemistrySelect 2017. [DOI: 10.1002/slct.201701173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zengmin Tang
- Department of Chemical Engineering; College of Engineering; Kyung Hee University; Youngin 17104 Korea
| | - Hyunguk Kwon
- Department of Chemical Engineering; University of Seoul; Seoul Korea,
| | - Minyoung Yi
- Department of Chemical Engineering; College of Engineering; Kyung Hee University; Youngin 17104 Korea
| | - Kyungpil Kim
- School of Information and Communications; Gwangju Institute of Science and Technology; Gwangju 61005 Korea
| | - Jeong Woo Han
- Department of Chemical Engineering; University of Seoul; Seoul Korea,
| | - Woo-Sik Kim
- Department of Chemical Engineering; College of Engineering; Kyung Hee University; Youngin 17104 Korea
| | - Taekyung Yu
- Department of Chemical Engineering; College of Engineering; Kyung Hee University; Youngin 17104 Korea
| |
Collapse
|
10
|
Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem Rev 2016; 116:3722-811. [DOI: 10.1021/acs.chemrev.5b00482] [Citation(s) in RCA: 1589] [Impact Index Per Article: 176.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Manoj B. Gawande
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
11, 783 71 Olomouc, Czech Republic
| | - Anandarup Goswami
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
11, 783 71 Olomouc, Czech Republic
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Department
of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - François-Xavier Felpin
- UFR
Sciences et Techniques, UMR CNRS 6230, Chimie et Interdisciplinarité:
Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes, 2 Rue de la Houssinière, BP 92208, Nantes 44322 Cedex 3, France
| | - Tewodros Asefa
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Department
of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Xiaoxi Huang
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Rafael Silva
- Department
of Chemistry, Maringá State University, Avenida Colombo 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Xiaoxin Zou
- State
Key
Laboratory of Inorganic Synthesis and Preparative Chemistry, International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Radek Zboril
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
11, 783 71 Olomouc, Czech Republic
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
11, 783 71 Olomouc, Czech Republic
| |
Collapse
|