1
|
Li MY, Gu A, Li J, Liu Y. Advanced green synthesis: Solvent-free and catalyst-free reaction. GREEN SYNTHESIS AND CATALYSIS 2025; 6:36-66. [DOI: 10.1016/j.gresc.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
|
2
|
Li MY, Li J, Gu A, Nong XM, Zhai S, Yue ZY, Feng CG, Liu Y, Lin GQ. Solvent-free and catalyst-free direct alkylation of alkenes. GREEN CHEMISTRY 2023; 25:7073-7078. [DOI: 10.1039/d3gc02685j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A convenient method for synthesizing trisubstituted alkenes through direct alkylation of alkenes was achieved under solvent-free and catalyst-free conditions. This reaction highlighted by a low E-factor and a high atom- and step-economy.
Collapse
Affiliation(s)
- Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Mei Nong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Chen ZD, Xu WK, Guo JM, Chen L, Wei BG, Si CM, Lin GQ. A One-Pot Approach to 2-Substituted-2-(Dimethoxyphosphoryl)-Pyrrolidines from Substituted tert-Butyl 4-Oxobutylcarbamates and Trimethyl Phosphite. J Org Chem 2021; 86:11442-11455. [PMID: 34479405 DOI: 10.1021/acs.joc.1c00935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel approach to 2-substituted-2-(dimethoxyphosphoryl)-pyrrolidines 7a-7o and 9a-9r has been developed, which features a TMSOTf-mediated one-pot intramolecular cyclization and phosphonylation of substituted tert-butyl 4-oxobutylcarbamates. The major advantages of this method include simple operation under mild reaction conditions, the use of cheap Lewis acid, and good to excellent yields with high diastereoselectivities (dr up to 99:1).
Collapse
Affiliation(s)
- Zhao-Dan Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wen-Ke Xu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jia-Ming Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Ling Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chang-Mei Si
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Sharma A, Kaur G, Singh D, Gupta VK, Banerjee B. A General Method for the Synthesis of 11H-Indeno[1,2-B]Quinoxalin- 11-Ones and 6H-Indeno[1,2-B]Pyrido[3,2-E]Pyrazin-6-One Derivatives Using Mandelic Acid as an Efficient Organo-Catalyst at Room Temperature. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337208666210825112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aims:
Synthesis of 11H-indeno[1,2-b]quinoxalin-11-ones as well as 6H-indeno[1,2-b]pyrido[3,2-e]pyrazin-6-one derivatives under greener conditions.
Background:
Quinoxaline and related skeletons are very common in naturally occurring bioactive compounds.
Objective:
Design a facile, green and organo-catalyzed method for the synthesis of 11H-indeno[1,2-b]quinoxalin-11-ones as well as 6H-indeno[1,2-b]pyrido[3,2-e]pyrazin-6-one derivatives.
Methods:
Both the scaffolds were synthesized via the condensation of ninhydrin and o-phenylenediamines or pyridine-2,3-diamines respectively by using a catalytic amount of mandelic acid as an efficient, commercially available, low cost, organo-catalyst in aqueous ethanol at room temperature.
Results:
Mild reaction conditions, use of metal-free organocatalyst, non-toxic solvent, ambient temperature, and no column chromatographic separation are some of the notable advantages of our developed protocol.
Conclusion:
In conclusion, we have developed a simple, mild, facile and efficient method for the synthesis of structurally diverse 11H-indeno[1,2-b]quinoxalin-11-one derivatives via the condensation reactions of ninhydrin and various substituted benzene-1,2-diamines using a catalytic amount of mandelic acid as a commercially available metal-free organo-catalyst in aqueous ethanol at room temperature. Under the same optimized reaction conditions, synthesis of 6H-indeno[1,2-b]pyrido[3,2-e]pyrazin-6-one derivatives was also accomplished with excellent yields by using pyridine-2,3-diamines instead of o-phenylenediamine.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab-151302, India
| | - Gurpreet Kaur
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab-151302, India
| | - Diksha Singh
- Department of Chemistry, Indus International University, V.P.O Bathu, Dist. Una, Himachal Pradesh, Pin-174301, India
| | - Vivek Kumar Gupta
- Department of Physics, University of Jammu, Jammu Tawi-180 006, India
| | - Bubun Banerjee
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab-151302, India
| |
Collapse
|
5
|
Das S. Recent applications of ninhydrin in multicomponent reactions. RSC Adv 2020; 10:18875-18906. [PMID: 35518326 PMCID: PMC9054093 DOI: 10.1039/d0ra02930k] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022] Open
Abstract
Ninhydrin (1,2,3-indanetrione hydrate) has a remarkable breadth in different fields, including organic chemistry, biochemistry, analytical chemistry and the forensic sciences. For the past several years, it has been considered an important building block in organic synthesis. Therefore, there is increasing interest in ninhydrin-based multicomponent reactions to rapidly build versatile scaffolds. Most of the works described here are simple reactions with readily available starting materials that result in complex molecular architectures. Some of the synthesized compounds exhibit interesting biological activities and constitute a new hope for anticancer agents. The present review aims to highlight the multicomponent reactions of ninhydrin towards diverse organic molecules during the period from 2014 to 2019. This article aims to review recent multicomponent reactions of ninhydrin towards diverse organic scaffolds, such as indeno-fused heterocycles, spiro-indeno heterocycles, quinoxalines, propellanes, cage-like compounds, and dispiro heterocycles.![]()
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry
- Rishi Bankim Chandra College for Women
- India
| |
Collapse
|
6
|
Perfluorophenyl phosphonate analogues of aromatic amino acids: Synthesis, X-ray and DFT studies. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Taheri-Torbati M, Eshghi H, Rounaghi SA, Shiri A, Mirzaei M. Synthesis, characterization and application of nitrogen–sulfur-doped carbon spheres as an efficient catalyst for the preparation of novel α-aminophosphonates. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1135-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Sonochemical synthesis of pyrido[2,3-d:6,5-d′]-dipyrimidines catalyzed by [HNMP]+[HSO4]− and their antimicrobial activity studies. J Antibiot (Tokyo) 2017; 70:845-852. [DOI: 10.1038/ja.2017.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 01/24/2017] [Accepted: 02/23/2017] [Indexed: 11/08/2022]
|
9
|
Abstract
Over the past 15 years, sustainable chemistry has emerged as a new paradigm in the development of chemistry. In the field of organic synthesis, green chemistry rhymes with relevant choice of starting materials, atom economy, methodologies that minimize the number of chemical steps, appropriate use of benign solvents and reagents, efficient strategies for product isolation and purification and energy minimization. In that context, unconventional methods, and especially ultrasound, can be a fine addition towards achieving these green requirements. Undoubtedly, sonochemistry is considered as being one of the most promising green chemical methods (Cravotto et al. Catal Commun 63: 2-9, 2015). This review is devoted to the most striking results obtained in green organic sonochemistry between 2006 and 2016. Furthermore, among catalytic transformations, oxidation reactions are the most polluting reactions in the chemical industry; thus, we have focused a part of our review on the very promising catalytic activity of ultrasound for oxidative purposes.
Collapse
|
10
|
da Silva CDG, Oliveira AR, Rocha MPD, Katla R, Botero ER, da Silva ÉC, Domingues NLC. A new, efficient and recyclable [Ce(l-Pro)]2(Oxa) heterogeneous catalyst used in the Kabachnik–Fields reaction. RSC Adv 2016. [DOI: 10.1039/c5ra27064b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We report an eco-friendly, easy and efficient methodology for the synthesis of α-aminophosphonates using [Ce(l-Pro)]2(Oxa) as a catalyst.
Collapse
Affiliation(s)
- Caren D. G. da Silva
- Organic Catalysis and Biocatalysis Laboratory – OCBL
- Federal University of Grande Dourados – UFGD
- Dourados/MS
- Brazil
| | - Aline R. Oliveira
- Organic Catalysis and Biocatalysis Laboratory – OCBL
- Federal University of Grande Dourados – UFGD
- Dourados/MS
- Brazil
| | - Mariana P. D. Rocha
- Organic Catalysis and Biocatalysis Laboratory – OCBL
- Federal University of Grande Dourados – UFGD
- Dourados/MS
- Brazil
| | - Ramesh Katla
- Organic Catalysis and Biocatalysis Laboratory – OCBL
- Federal University of Grande Dourados – UFGD
- Dourados/MS
- Brazil
| | - Eriton Rodrigo Botero
- Grupo de Óptica Aplicada e Laboratório de Materiais Cerâmicos
- Federal University of Grande Dourados – UFGD
- Brazil
| | | | - Nelson Luís C. Domingues
- Organic Catalysis and Biocatalysis Laboratory – OCBL
- Federal University of Grande Dourados – UFGD
- Dourados/MS
- Brazil
| |
Collapse
|