1
|
Xu Q, Long S, Liu X, Duan A, Du M, Lu Q, Leng L, Leu SY, Wang D. Insights into the Occurrence, Fate, Impacts, and Control of Food Additives in Food Waste Anaerobic Digestion: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6761-6775. [PMID: 37070716 DOI: 10.1021/acs.est.2c06345] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The recovery of biomass energy from food waste through anaerobic digestion as an alternative to fossil energy is of great significance for the development of environmental sustainability and the circular economy. However, a substantial number of food additives (e.g., salt, allicin, capsaicin, allyl isothiocyanate, monosodium glutamate, and nonnutritive sweeteners) are present in food waste, and their interactions with anaerobic digestion might affect energy recovery, which is typically overlooked. This work describes the current understanding of the occurrence and fate of food additives in anaerobic digestion of food waste. The biotransformation pathways of food additives during anaerobic digestion are well discussed. In addition, important discoveries in the effects and underlying mechanisms of food additives on anaerobic digestion are reviewed. The results showed that most of the food additives had negative effects on anaerobic digestion by deactivating functional enzymes, thus inhibiting methane production. By reviewing the response of microbial communities to food additives, we can further improve our understanding of the impact of food additives on anaerobic digestion. Intriguingly, the possibility that food additives may promote the spread of antibiotic resistance genes, and thus threaten ecology and public health, is highlighted. Furthermore, strategies for mitigating the effects of food additives on anaerobic digestion are outlined in terms of optimal operation conditions, effectiveness, and reaction mechanisms, among which chemical methods have been widely used and are effective in promoting the degradation of food additives and increasing methane production. This review aims to advance our understanding of the fate and impact of food additives in anaerobic digestion and to spark novel research ideas for optimizing anaerobic digestion of organic solid waste.
Collapse
Affiliation(s)
- Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Sha Long
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Abing Duan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Ling Leng
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
2
|
Dai S, Harnisch F, Bin-Hudari MS, Keller NS, Vogt C, Korth B. Improving the performance of bioelectrochemical sulfate removal by applying flow mode. Microb Biotechnol 2023; 16:595-604. [PMID: 36259447 PMCID: PMC9948226 DOI: 10.1111/1751-7915.14157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Treatment of wastewater contaminated with high sulfate concentrations is an environmental imperative lacking a sustainable and environmental friendly technological solution. Microbial electrochemical technology (MET) represents a promising approach for sulfate reduction. In MET, a cathode is introduced as inexhaustible electron source for promoting sulfate reduction via direct or mediated electron transfer. So far, this is mainly studied in batch mode representing straightforward and easy-to-use systems, but their practical implementation seems unlikely, as treatment capacities are limited. Here, we investigated bioelectrochemical sulfate reduction in flow mode and achieved removal efficiencies (Esulfate , 89.2 ± 0.4%) being comparable to batch experiments, while sulfate removal rates (Rsulfate , 3.1 ± 0.2 mmol L-1 ) and Coulombic efficiencies (CE, 85.2 ± 17.7%) were significantly increased. Different temperatures and hydraulic retention times (HRT) were applied and the best performance was achieved at HRT 3.5 days and 30°C. Microbial community analysis based on amplicon sequencing demonstrated that sulfate reduction was mainly performed by prokaryotes belonging to the genera Desulfomicrobium, Desulfovibrio, and Desulfococcus, indicating that hydrogenotrophic and heterotrophic sulfate reduction occurred by utilizing cathodically produced H2 or acetate produced by homoacetogens (Acetobacterium). The advantage of flow operation for bioelectrochemical sulfate reduction is likely based on higher absolute biomass, stable pH, and selection of sulfate reducers with a higher sulfide tolerance, and improved ratio between sulfate-reducing prokaryotes and homoacetogens.
Collapse
Affiliation(s)
- Shixiang Dai
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Mohammad Sufian Bin-Hudari
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Nina Sophie Keller
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Benjamin Korth
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| |
Collapse
|
3
|
Singh R, Chaudhary S, Yadav S, Patil SA. Protocol for bioelectrochemical enrichment, cultivation, and characterization of extreme electroactive microorganisms. STAR Protoc 2022; 3:101114. [PMID: 35118426 PMCID: PMC8792420 DOI: 10.1016/j.xpro.2021.101114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Electroactive microorganisms (EAMs) are a group of microbes that can access solid extracellular electron donors or acceptors via extracellular electron transfer processes. EAMs are useful in developing various microbial electrochemical technologies. This protocol describes the use of bioelectrochemical systems (BESs) to enrich EAMs at the cathode from an extreme haloalkaline habitat. It also provides information for a detailed characterization of enriched cathodic biofilms via various cross-disciplinary techniques, including electrochemical, analytical, microscopic, and gene sequencing techniques. For complete details on the use and execution of this protocol, please refer to Chaudhary et al. (2021). Detailed protocol for the electrochemical enrichment of extreme microorganisms Useful for cultivating different microbes at cathode of bioelectrochemical systems Protocols for characterizing electrotrophic biofilm and metabolic products provided These include electrochemical, analytical, microscopic, and gene sequencing techniques
Collapse
Affiliation(s)
- Ramandeep Singh
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, 140306 Punjab, India
| | - Srishti Chaudhary
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, 140306 Punjab, India
| | - Sukrampal Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, 140306 Punjab, India
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, 140306 Punjab, India
| |
Collapse
|
4
|
Dai S, Korth B, Schwab L, Aulenta F, Vogt C, Harnisch F. Deciphering the fate of sulfate in one- and two-chamber bioelectrochemical systems. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Ostermeyer P, Bonin L, Leon‐Fernandez LF, Dominguez‐Benetton X, Hennebel T, Rabaey K. Electrified bioreactors: the next power-up for biometallurgical wastewater treatment. Microb Biotechnol 2022; 15:755-772. [PMID: 34927376 PMCID: PMC8913880 DOI: 10.1111/1751-7915.13992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
Over the past decades, biological treatment of metallurgical wastewaters has become commonplace. Passive systems require intensive land use due to their slow treatment rates, do not recover embedded resources and are poorly controllable. Active systems however require the addition of chemicals, increasing operational costs and possibly negatively affecting safety and the environment. Electrification of biological systems can reduce the use of chemicals, operational costs, surface footprint and environmental impact when compared to passive and active technologies whilst increasing the recovery of resources and the extraction of products. Electrification of low rate applications has resulted in the development of bioelectrochemical systems (BES), but electrification of high rate systems has been lagging behind due to the limited mass transfer, electron transfer and biomass density in BES. We postulate that for high rate applications, the electrification of bioreactors, for example, through the use of electrolyzers, may herald a new generation of electrified biological systems (EBS). In this review, we evaluate the latest trends in the field of biometallurgical and microbial-electrochemical wastewater treatment and discuss the advantages and challenges of these existing treatment technologies. We advocate for future research to focus on the development of electrified bioreactors, exploring the boundaries and limitations of these systems, and their validity upon treating industrial wastewaters.
Collapse
Affiliation(s)
- Pieter Ostermeyer
- Faculty of Bioscience EngineeringCenter of Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653GhentB‐9000Belgium
- CAPTUREFrieda Saeysstraat 1Ghent9000Belgium
| | - Luiza Bonin
- Faculty of Bioscience EngineeringCenter of Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653GhentB‐9000Belgium
- CAPTUREFrieda Saeysstraat 1Ghent9000Belgium
| | - Luis Fernando Leon‐Fernandez
- Separation and Conversion TechnologyFlemish Institute for Technological Research (VITO)Boeretang 200Mol2400Belgium
| | - Xochitl Dominguez‐Benetton
- Separation and Conversion TechnologyFlemish Institute for Technological Research (VITO)Boeretang 200Mol2400Belgium
| | - Tom Hennebel
- Faculty of Bioscience EngineeringCenter of Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653GhentB‐9000Belgium
- Group Research and Development, Competence Area Recycling and Extraction TechnologiesUmicoreWatertorenstraat 33OlenB‐2250Belgium
| | - Korneel Rabaey
- Faculty of Bioscience EngineeringCenter of Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653GhentB‐9000Belgium
- CAPTUREFrieda Saeysstraat 1Ghent9000Belgium
| |
Collapse
|
6
|
Blázquez E, Gabriel D, Baeza JA, Guisasola A, Ledezma P, Freguia S. Implementation of a Sulfide-Air Fuel Cell Coupled to a Sulfate-Reducing Biocathode for Elemental Sulfur Recovery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115571. [PMID: 34071068 PMCID: PMC8197079 DOI: 10.3390/ijerph18115571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
Bio-electrochemical systems (BES) are a flexible biotechnological platform that can be employed to treat several types of wastewaters and recover valuable products concomitantly. Sulfate-rich wastewaters usually lack an electron donor; for this reason, implementing BES to treat the sulfate and the possibility of recovering the elemental sulfur (S0) offers a solution to this kind of wastewater. This study proposes a novel BES configuration that combines bio-electrochemical sulfate reduction in a biocathode with a sulfide–air fuel cell (FC) to recover S0. The proposed system achieved high elemental sulfur production rates (up to 386 mg S0-S L−1 d−1) with 65% of the sulfate removed recovered as S0 and a 12% lower energy consumption per kg of S0 produced (16.50 ± 0.19 kWh kg−1 S0-S) than a conventional electrochemical S0 recovery system.
Collapse
Affiliation(s)
- Enric Blázquez
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.G.); (J.A.B.); (A.G.)
- Correspondence:
| | - David Gabriel
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.G.); (J.A.B.); (A.G.)
| | - Juan Antonio Baeza
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.G.); (J.A.B.); (A.G.)
| | - Albert Guisasola
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.G.); (J.A.B.); (A.G.)
| | - Pablo Ledezma
- Advanced Water Management Centre, The University of Queensland, Brisbane 4072, Australia; (P.L.); (S.F.)
| | - Stefano Freguia
- Advanced Water Management Centre, The University of Queensland, Brisbane 4072, Australia; (P.L.); (S.F.)
| |
Collapse
|
7
|
Blázquez E, Gabriel D, Baeza JA, Guisasola A, Freguia S, Ledezma P. Recovery of elemental sulfur with a novel integrated bioelectrochemical system with an electrochemical cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:175-183. [PMID: 31055098 DOI: 10.1016/j.scitotenv.2019.04.406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Several industrial activities produce wastewater with high sulfate content that can cause significant environmental issues. Although bioelectrochemical systems (BESs) have recently been studied for the treatment of sulfate contained in this wastewater, the recovery of elemental sulfur with BESs is still in its beginnings. This work proposes a new reactor configuration named BES-EC, consisting of the coupling of a BES with an electrochemical cell (EC), to treat this type of wastewater and recover elemental sulfur. The reactor consisted of four electrodes: i) an abiotic anode, ii) a biocathode for the autotrophic sulfate reduction, iii) an anode of an electrochemical cell (EC) for the partial oxidation of sulfide to elemental sulfur (the biocathode and the EC anode were placed in the same chamber) and iv) an abiotic EC cathode. Several cathode potentials and sulfate loads were tested, obtaining high sulfate removal rates (up to 888 mg SO42--S L-1 d-1 at -0.9 V vs. SHE with a specific energy consumption of 9.18 ± 0.80 kWh kg-1 SO42--S). Exceptionally high theoretical elemental sulfur production rates (up to 498 mg S0-S L-1 d-1) were achieved with the EC controlled at a current density of 2.5 A m-2. Electron recovery around 80% was observed throughout most of the operation of the integrated system. In addition, short experiments were performed at different current densities, observing that sulfate removal did not increase proportionally to the higher applied current density. However, when the BES was controlled at 30 A m-2 and the EC at 7.5 A m-2, the proportion of elemental sulfur produced corresponded to 92.9 ± 1.9% of all sulfate removed.
Collapse
Affiliation(s)
- Enric Blázquez
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - David Gabriel
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Juan Antonio Baeza
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Albert Guisasola
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Stefano Freguia
- Advanced Water Management Centre, The University of Queensland, St Lucia QLD 4072, Brisbane, Australia
| | - Pablo Ledezma
- Advanced Water Management Centre, The University of Queensland, St Lucia QLD 4072, Brisbane, Australia.
| |
Collapse
|
8
|
Blázquez E, Baeza JA, Gabriel D, Guisasola A. Treatment of real flue gas desulfurization wastewater in an autotrophic biocathode in view of elemental sulfur recovery: Microbial communities involved. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:945-952. [PMID: 30677960 DOI: 10.1016/j.scitotenv.2018.12.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Sulfur oxide emissions can lead to acidic precipitation and health concerns. Flue gas desulfurization (FGD) systems treat these emissions generating a wastewater with high-sulfate content. This work is the first attempt to treat this effluent with bioelectrochemical systems (BES) in order to recover elemental sulfur, a technology that allows the treatment of several wastewaters that lack of electron donor. The sulfate treatment and elemental sulfur recovery have been studied in a biocathode with simultaneous sulfate reduction to sulfide and partial sulfide oxidation, comparing the performance obtained with synthetic and real wastewater. A decrease of the sulfate removal rate (SRR) from 108 to 73mgS-SO42-L-1d-1 was observed coupled to an increase in the elemental sulfur recovery from 1.4 to 27mgS-S0L-1d-1. This elemental sulfur recovered as a solid from the real wastewater represented a 64% of the theoretical elemental sulfur produced (the elemental sulfur corresponded to a 72% of the solid weight). In addition, microbial communities analysis of the membrane and cathode biofilms and planktonic biomass showed that the real wastewater allowed a higher growth of sulfur oxidizing bacteria (SOB) adapted to more complex waters as Halothiobacillus sp. while decreasing the relative abundance of sulfate reducing bacteria (SRB).
Collapse
Affiliation(s)
- Enric Blázquez
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Juan Antonio Baeza
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - David Gabriel
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Albert Guisasola
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
9
|
De Vrieze J, Arends JBA, Verbeeck K, Gildemyn S, Rabaey K. Interfacing anaerobic digestion with (bio)electrochemical systems: Potentials and challenges. WATER RESEARCH 2018; 146:244-255. [PMID: 30273809 DOI: 10.1016/j.watres.2018.08.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
For over a century, anaerobic digestion has been a key technology in stabilizing organic waste streams, while at the same time enabling the recovery of energy. The anticipated transition to a bio-based economy will only increase the quantity and diversity of organic waste streams to be treated, and, at the same time, increase the demand for additional and effective resource recovery schemes for nutrients and organic matter. The performance of anaerobic digestion can be supported and enhanced by (bio)electrochemical systems in a wide variety of hybrid technologies. Here, the possible benefits of combining anaerobic digestion with (bio)electrochemical systems were reviewed in terms of (1) process monitoring, control, and stabilization, (2) nutrient recovery, (3) effluent polishing, and (4) biogas upgrading. The interaction between microorganisms and electrodes with respect to niche creation is discussed, and the potential impact of this interaction on process performance is evaluated. The strength of combining anaerobic digestion with (bio)electrochemical technologies resides in the complementary character of both technologies, and this perspective was used to distinguish transient trends from schemes with potential for full-scale application. This is supported by an operational costs assessment, showing that the economic potential of combining anaerobic digestion with a (bio)electrochemical system is highly case-specific, and strongly depends on engineering challenges with respect to full-scale applications.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Jan B A Arends
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Kristof Verbeeck
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Sylvia Gildemyn
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium; OWS nv, Dok Noord 5, 9000, Gent, Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium.
| |
Collapse
|
10
|
Marx Sander E, Virdis B, Freguia S. Bioelectrochemical Denitrification for the Treatment of Saltwater Recirculating Aquaculture Streams. ACS OMEGA 2018; 3:4252-4261. [PMID: 30023889 PMCID: PMC6044578 DOI: 10.1021/acsomega.8b00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/27/2018] [Indexed: 05/25/2023]
Abstract
Maintaining low concentrations of nitrogen compounds (ammonium, nitrate and nitrite) in recirculating aquaculture waters is extremely important for a larger and healthier fish production, as well as for water discharge purposes. Although ammonium removal from aquaculture streams is usually done within a nitrifying step, nitrate removal via denitrification is still partially limited by the low organic matter availability. Therefore, an easy-to-operate autotrophic denitrifying bioelectrochemical system is herein proposed for the treatment of seawater aquaculture streams. The nitrate-containing synthetic stream flows sequentially through a biological denitrifying cathode (placed at the lower portion of a tubular reactor) and an abiotic anode (generating electrons and oxygen from water splitting, at the upper portion). Experimental results with synthetic seawater showed that the system reached denitrification rates of 0.13 ± 0.01 kg N m-3 day-1, operating with minimum ammonium and nitrite accumulation, as well as minimum chlorine formation in the abiotic anode, despite the high chloride concentration. There results support the technical potential for simultaneous bioelectrochemical denitrification and partial re-oxygenation of aquaculture waters either for recirculation or discharge purposes.
Collapse
Affiliation(s)
- Elisa Marx Sander
- Advanced Water
Management
Centre, The University of Queensland, Level 4, Gehrmann Laboratories Building
(60), Brisbane, QLD 4072, Australia
| | - Bernardino Virdis
- Advanced Water
Management
Centre, The University of Queensland, Level 4, Gehrmann Laboratories Building
(60), Brisbane, QLD 4072, Australia
| | - Stefano Freguia
- Advanced Water
Management
Centre, The University of Queensland, Level 4, Gehrmann Laboratories Building
(60), Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Ledezma P, Lu Y, Freguia S. Electroactive haloalkaliphiles exhibit exceptional tolerance to free ammonia. FEMS Microbiol Lett 2018; 365:4689094. [PMID: 29228269 DOI: 10.1093/femsle/fnx260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
Electrochemical activity in bacteria has been observed in numerous environments and conditions. However, enrichments in circumneutral freshwater media where acetate is the main electron donor seem to invariably lead to the dominance of Geobacter spp. Here we report on an electroactive bacterial consortium which was enriched on acetate as electron donor, but in a medium which reproduces hydrolysed urine (high pH, high salinity and high free ammonia). The consortium was found to be free of Geobacter species, whereas a previously undescribed community dominated by species closely related to Pseudomonas and Desulfuromonas was established. The salient features of this community were as follows: (i) high electroactivity, with anodic current densities up to 47.4 ± 2.0 A m-2; (ii) haloalkaliphilicity, with top performance at a medium pH of 10 and 19.5 ± 0.5 mS cm-1; and (iii) a remarkably high tolerance to free ammonia toxicity at over 2200 mgNH3-N L-1. This community is likely to find applications in microbial electrochemical technology for nutrient recovery from source-separated urine.
Collapse
Affiliation(s)
- Pablo Ledezma
- Advanced Water Management Centre, The University of Queensland, St Lucia Campus, Gehrmann Laboratories level 4, QLD 4072, Australia
| | - Yang Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia Campus, Gehrmann Laboratories level 4, QLD 4072, Australia
| | - Stefano Freguia
- Advanced Water Management Centre, The University of Queensland, St Lucia Campus, Gehrmann Laboratories level 4, QLD 4072, Australia
| |
Collapse
|
12
|
Reactors for Microbial Electrobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 167:231-271. [PMID: 29651504 DOI: 10.1007/10_2017_40] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
From the first electromicrobial experiment to a sophisticated microbial electrochemical process - it all takes place in a reactor. Whereas the reactor design and materials used strongly influence the obtained results, there are no common platforms for MES reactors. This is a critical convention gap, as cross-comparison and benchmarking among MES as well as MES vs. conventional biotechnological processes is needed. Only knowledge driven engineering of MES reactors will pave the way to application and commercialization. In this chapter we first assess the requirements on reactors to be used for bioelectrochemical systems as well as potential losses caused by the reactor design. Subsequently, we compile the main types and designs of reactors used for MES so far, starting from simple H-cells to stirred tank reactors. We conclude with a discussion on the weaknesses and strengths of the existing types of reactors for bioelectrochemical systems that are scored on design criteria and draw conclusions for the future engineering of MES reactors.
Collapse
|
13
|
Brewster ET, Pozo G, Batstone DJ, Freguia S, Ledezma P. A modelling approach to assess the long-term stability of a novel microbial/electrochemical system for the treatment of acid mine drainage. RSC Adv 2018; 8:18682-18689. [PMID: 35541131 PMCID: PMC9080545 DOI: 10.1039/c8ra03153c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022] Open
Abstract
Microbial electrochemical processes have potential to remediate acid mine drainage (AMD) wastewaters which are highly acidic and rich in sulfate and heavy metals, without the need for extensive chemical dosing. In this manuscript, a novel hybrid microbial/electrochemical remediation process which uses a 3-reactor system – a precipitation vessel, an electrochemical reactor and a microbial electrochemical reactor with a sulfate-reducing biocathode – was modelled. To evaluate the long-term operability of this system, a dynamic model for the fluxes of 140 different ionic species was developed and calibrated using laboratory-scale experimental data. The model identified that when the reactors are operating in the desired state, the coulombic efficiency of sulfate removal from AMD is high (91%). Modelling also identified that a periodic electrolyte purge is required to prevent the build-up of Cl− ions in the microbial electrochemical reactor. The model furthermore studied the fate of sulfate and carbon in the system. For sulfate, it was found that only 29% can be converted into elemental sulfur, with the rest complexating with metals in the precipitation vessel. Finally, the model shows that the flux of inorganic carbon under the current operational strategy is insufficient to maintain the autotrophic sulfate-reducing biomass. The modelling approach demonstrates that a change in system operational strategies plus close monitoring of overlooked ionic species (such as Cl− and HCO3−) are key towards the scaling-up of this technology. Microbial electrochemical processes have potential to remediate acid mine drainage (AMD) wastewaters which are highly acidic and rich in sulfate and heavy metals, without the need for extensive chemical dosing.![]()
Collapse
Affiliation(s)
| | - Guillermo Pozo
- Advanced Water Management Centre
- The University of Queensland
- Australia
| | | | - Stefano Freguia
- Advanced Water Management Centre
- The University of Queensland
- Australia
| | - Pablo Ledezma
- Advanced Water Management Centre
- The University of Queensland
- Australia
| |
Collapse
|
14
|
Pozo G, Pongy S, Keller J, Ledezma P, Freguia S. A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage. WATER RESEARCH 2017; 126:411-420. [PMID: 28987953 DOI: 10.1016/j.watres.2017.09.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
The mining sector is currently under unprecedented pressure due to stringent environmental regulations. As a consequence, a permanent acid mine drainage (AMD) treatment is increasingly being regarded as a desirable target with direct benefits for the environment and the operational and economic viability of the resources sector. In this study we demonstrate that a novel bioelectrochemical system (BES) can deliver permanent treatment of acid mine drainage without chemical dosing. The technology consists of a two-cell bioelectrochemical setup to enable the removal of sulfate from the ongoing reduction-oxidation sulfur cycle to less than 550 mg L-1 (85 ± 2% removal from a real AMD of an abandoned silver mine), thereby also reducing salinity at an electrical energy requirement of 10 ± 0.3 kWh kg-1 of SO42--S removed. In addition, the BES operation drove the removal and recovery of the main cations Al, Fe, Mg, Zn at rates of 151 ± 0 g Al m-3 d-1, 179 ± 1 g Fe m-3 d-1, 172 ± 1 g Mg m-3 d-1 and 46 ± 0 g Zn m-3 d-1 into a concentrate stream containing 263 ± 2 mg Al, 279 ± 2 mg Fe, 152 ± 0 mg Mg and 90 ± 0 mg Zn per gram of solid precipitated after BES fed-rate control treatment. The solid metal-sludge was twice less voluminous and 9 times more readily settleable than metal-sludge precipitated using NaOH. The continuous BES treatment also demonstrated the concomitant precipitation of rare earth elements together with yttrium (REY), with up to 498 ± 70 μg Y, 166 ± 27 μg Nd, 155 ± 14 μg Gd per gram of solid, among other high-value metals. The high-REY precipitates could be used to offset the treatment costs.
Collapse
Affiliation(s)
- Guillermo Pozo
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia; Separation and Conversion Technologies, VITO-Flemish Institute for Technological Research, Boeretang 200, 2400, Mol, Belgium
| | - Sebastien Pongy
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia; Département Génie Energétique et Environnement, INSA Lyon, 69621 Villeurbanne Cedex, France
| | - Jürg Keller
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia; Cooperative Research Centre for Water Sensitive Cities, Australia
| | - Pablo Ledezma
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Stefano Freguia
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
15
|
Blázquez E, Gabriel D, Baeza JA, Guisasola A. Evaluation of key parameters on simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode. WATER RESEARCH 2017; 123:301-310. [PMID: 28675843 DOI: 10.1016/j.watres.2017.06.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/13/2017] [Accepted: 06/18/2017] [Indexed: 06/07/2023]
Abstract
Bioelectrochemical systems (BESs) are being studied as an alternative technology for the treatment of several kinds of wastewaters with a lack of electron donor such as high-strength sulfate wastewaters. This study evaluates different parameters that influence the simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode: ion-exchange membrane (IEM), cathodic pH and cathode potential. Two different membranes were studied to evaluate sulfate and sulfide adsorption and diffusion from the cathode to the anode, observing that a cation-exchange membrane (CEM) widely decreased these effects. Three different cathode pH (5.5, 7 and 8.5) were studied in a long-term operation observing that pH = 7 was the optimal for sulfate removal, achieving reduction rates around 150 mg S-SO42- L-1 d-1. Microbial community analysis of the cathode biofilm demonstrated a high abundance of sulfate-reducing bacteria (SRB, 67% at pH 7, 60% at pH 8.5 and 42% at pH 5.5), mainly Desulfovibrio sp. at pH 5.5 and 7 and Desulfonatronum sp. at pH 8.5. The cathode potential also was studied from -0.7 to -1.2 V vs. SHE achieving sulfate removal rates higher than 700 mg S-SO42- L-1 d-1 at cathode potentials from -1.0 to -1.2 V vs. SHE. Also, the highest cathodic recovery and the highest sulfur species imbalance were observed at a cathode potential of -1.0 V vs. SHE, which indicated a higher elemental sulfur production.
Collapse
Affiliation(s)
- Enric Blázquez
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - David Gabriel
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Juan Antonio Baeza
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Albert Guisasola
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
16
|
Pous N, Balaguer MD, Colprim J, Puig S. Opportunities for groundwater microbial electro-remediation. Microb Biotechnol 2017; 11:119-135. [PMID: 28984425 PMCID: PMC5743827 DOI: 10.1111/1751-7915.12866] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/01/2022] Open
Abstract
Groundwater pollution is a serious worldwide concern. Aromatic compounds, chlorinated hydrocarbons, metals and nutrients among others can be widely found in different aquifers all over the world. However, there is a lack of sustainable technologies able to treat these kinds of compounds. Microbial electro‐remediation, by the means of microbial electrochemical technologies (MET), can become a promising alternative in the near future. MET can be applied for groundwater treatment in situ or ex situ, as well as for monitoring the chemical state or the microbiological activity. This document reviews the current knowledge achieved on microbial electro‐remediation of groundwater and its applications.
Collapse
Affiliation(s)
- Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Maria Dolors Balaguer
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Jesús Colprim
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| |
Collapse
|
17
|
Pozo G, Lu Y, Pongy S, Keller J, Ledezma P, Freguia S. Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells. Bioelectrochemistry 2017; 118:62-69. [PMID: 28719849 DOI: 10.1016/j.bioelechem.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
Selective microbial retention is of paramount importance for the long-term performance of cathodic sulfate reduction in microbial electrolysis cells (MECs) due to the slow growth rate of autotrophic sulfate-reducing bacteria. In this work, we investigate the biofilm retention and current-to-sulfide conversion efficiency using carbon granules (CG) or multi-wall carbon nanotubes deposited on reticulated vitreous carbon (MWCNT-RVC) as electrode materials. For ~2months, the MECs were operated at sulfate loading rates of 21 to 309gSO4 -S/m2/d. Although MWCNT-RVC achieved a current density of 57±11A/m2, greater than the 32±9A/m2 observed using CG, both materials exhibited similar sulfate reduction rates (SRR), with MWCNT-RVC reaching 104±16gSO4 -S/m2/d while 110±13gSO4 -S/m2/d were achieved with CG. Pyrosequencing analysis of the 16S rRNA at the end of experimentation revealed a core community dominated by Desulfovibrio (28%), Methanobacterium (19%) and Desulfomicrobium (14%), on the MWCNT-RVC electrodes. While a similar Desulfovibrio relative abundance of 29% was found in CG-biofilms, Desulfomicrobium was found to be significantly less abundant (4%) and Methanobacterium practically absent (0.2%) on CG electrodes. Surprisingly, our results show that CG can achieve higher current-to-sulfide efficiencies at lower power consumption than the nano-modified three-dimensional MWCNT-RVC.
Collapse
Affiliation(s)
- Guillermo Pozo
- Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yang Lu
- Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia
| | - Sebastien Pongy
- Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia; Département Génie Energétique et Environnement, INSA Lyon, 69621 Villeurbanne Cedex, France
| | - Jürg Keller
- Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia
| | - Pablo Ledezma
- Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia
| | - Stefano Freguia
- Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
18
|
Mixed Culture Biocathodes for Production of Hydrogen, Methane, and Carboxylates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 167:203-229. [DOI: 10.1007/10_2017_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Blázquez E, Gabriel D, Baeza JA, Guisasola A. Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery. WATER RESEARCH 2016; 105:395-405. [PMID: 27662048 DOI: 10.1016/j.watres.2016.09.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Treatment of high-strength sulfate wastewaters is becoming a research issue not only for its optimal management but also for the possibility of recovering elemental sulfur. Moreover, sulfate-rich wastewater production is expected to grow due to the increased SO2 emission contained in flue gases which are treated by chemical absorption in water. Bioelectrochemical systems (BESs) are a promising alternative for sulfate reduction with a lack of electron donor, since hydrogen can be generated in situ from electricity. However, complete sulfate reduction leads to hydrogen sulfide as final sulfur compound. This work is the first to demonstrate that, in addition to an efficient sulfate-rich wastewater treatment, elemental sulfur could be recovered in a biocathode of a BES under oxygen limiting conditions. The key of the process is the biological oxidation of sulfide to elemental sulfur simultaneously to the sulfate reduction in the cathode using the oxygen produced in the anode that diffuses through the membrane. High sulfate reduction rates (up to 388 mg S-SO42- L-1 d-1) were observed linked to a low production of sulfide. Accumulation of elemental sulfur over graphite fibers of the biocathode was demonstrated by energy dispersive spectrometry, discarding the presence of metal sulfides. Microbial community analysis of the cathode biofilm demonstrated the presence of sulfate-reducing bacteria (mainly Desulfovibrio sp.) and sulfide-oxidizing bacteria (mainly Sulfuricurvum sp.). Hence, this biocathode allows simultaneous biological sulfate reduction and biological sulfide oxidation to elemental sulfur, opening up a novel process for recovering sulfur from sulfate-rich wastewaters.
Collapse
Affiliation(s)
- Enric Blázquez
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - David Gabriel
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Juan Antonio Baeza
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Albert Guisasola
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
20
|
Deutzmann JS, Spormann AM. Enhanced microbial electrosynthesis by using defined co-cultures. ISME JOURNAL 2016; 11:704-714. [PMID: 27801903 DOI: 10.1038/ismej.2016.149] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/02/2016] [Accepted: 09/18/2016] [Indexed: 01/23/2023]
Abstract
Microbial uptake of free cathodic electrons presents a poorly understood aspect of microbial physiology. Uptake of cathodic electrons is particularly important in microbial electrosynthesis of sustainable fuel and chemical precursors using only CO2 and electricity as carbon, electron and energy source. Typically, large overpotentials (200 to 400 mV) were reported to be required for cathodic electron uptake during electrosynthesis of, for example, methane and acetate, or low electrosynthesis rates were observed. To address these limitations and to explore conceptual alternatives, we studied defined co-cultures metabolizing cathodic electrons. The Fe(0)-corroding strain IS4 was used to catalyze the electron uptake reaction from the cathode forming molecular hydrogen as intermediate, and Methanococcus maripaludis and Acetobacterium woodii were used as model microorganisms for hydrogenotrophic synthesis of methane and acetate, respectively. The IS4-M. maripaludis co-cultures achieved electromethanogenesis rates of 0.1-0.14 μmol cm-2 h-1 at -400 mV vs standard hydrogen electrode and 0.6-0.9 μmol cm-2 h-1 at -500 mV. Co-cultures of strain IS4 and A. woodii formed acetate at rates of 0.21-0.23 μmol cm-2 h-1 at -400 mV and 0.57-0.74 μmol cm-2 h-1 at -500 mV. These data show that defined co-cultures coupling cathodic electron uptake with synthesis reactions via interspecies hydrogen transfer may lay the foundation for an engineering strategy for microbial electrosynthesis.
Collapse
Affiliation(s)
- Jörg S Deutzmann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Alfred M Spormann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.,Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Pozo G, Jourdin L, Lu Y, Keller J, Ledezma P, Freguia S. Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|