1
|
Lu A, Williams RO, Maniruzzaman M. 3D printing of biologics-what has been accomplished to date? Drug Discov Today 2024; 29:103823. [PMID: 37949427 DOI: 10.1016/j.drudis.2023.103823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Three-dimensional (3D) printing is a promising approach for the stabilization and delivery of non-living biologics. This versatile tool builds complex structures and customized resolutions, and has significant potential in various industries, especially pharmaceutics and biopharmaceutics. Biologics have become increasingly prevalent in the field of medicine due to their diverse applications and benefits. Stability is the main attribute that must be achieved during the development of biologic formulations. 3D printing could help to stabilize biologics by entrapment, support binding, or crosslinking. Furthermore, gene fragments could be transited into cells during co-printing, when the pores on the membrane are enlarged. This review provides: (i) an introduction to 3D printing technologies and biologics, covering genetic elements, therapeutic proteins, antibodies, and bacteriophages; (ii) an overview of the applications of 3D printing of biologics, including regenerative medicine, gene therapy, and personalized treatments; (iii) information on how 3D printing could help to stabilize and deliver biologics; and (iv) discussion on regulations, challenges, and future directions, including microneedle vaccines, novel 3D printing technologies and artificial-intelligence-facilitated research and product development. Overall, the 3D printing of biologics holds great promise for enhancing human health by providing extended longevity and enhanced quality of life, making it an exciting area in the rapidly evolving field of biomedicine.
Collapse
Affiliation(s)
- Anqi Lu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
2
|
Jahangiri S, Rahimnejad M, Nasrollahi Boroujeni N, Ahmadi Z, Motamed Fath P, Ahmadi S, Safarkhani M, Rabiee N. Viral and non-viral gene therapy using 3D (bio)printing. J Gene Med 2022; 24:e3458. [PMID: 36279107 DOI: 10.1002/jgm.3458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 12/30/2022] Open
Abstract
The overall success in launching discovered drugs is tightly restricted to the high rate of late-stage failures, which ultimately inhibits the distribution of medicines in markets. As a result, it is imperative that methods reliably predict the effectiveness and, more critically, the toxicity of medicine early in the drug development process before clinical trials be continuously innovated. We must stay up to date with the fast appearance of new infections and diseases by rapidly developing the requisite vaccinations and medicines. Modern in vitro models of disease may be used as an alternative to traditional disease models, and advanced technology can be used for the creation of pharmaceuticals as well as cells, drugs, and gene delivery systems to expedite the drug discovery procedure. Furthermore, in vitro models that mimic the spatial and chemical characteristics of native tissues, such as a 3D bioprinting system or other technologies, have proven to be more effective for drug screening than traditional 2D models. Viral and non-viral gene delivery vectors are a hopeful tool for combinatorial gene therapy, suggesting a quick way of simultaneously deliver multiple genes. A 3D bioprinting system embraces an excellent potential for gene delivery into the different cells or tissues for different diseases, in tissue engineering and regeneration medicine, in which the precise nucleic acid is located in the 3D printed tissues and scaffolds. Non-viral nanocarriers, in combination with 3D printed scaffolds, are applied to their delivery of genes and controlled release properties. There remains, however, a big obstacle in reaching the full potential of 3D models because of a lack of in vitro manufacturing of live tissues. Bioprinting advancements have made it possible to create biomimetic constructions that may be used in various drug discovery research applications. 3D bioprinting also benefits vaccinations, medicines, and relevant delivery methods because of its flexibility and adaptability. This review discusses the potential of 3D bioprinting technologies for pharmaceutical studies.
Collapse
Affiliation(s)
- Sepideh Jahangiri
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Maedeh Rahimnejad
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Biomedical Engineering Institute, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Narges Nasrollahi Boroujeni
- Bioprocess Engineering Research Group, Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Ahmadi
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Puria Motamed Fath
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, South Korea.,School of Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
3
|
Bhuskute H, Shende P, Prabhakar B. 3D Printed Personalized Medicine for Cancer: Applications for Betterment of Diagnosis, Prognosis and Treatment. AAPS PharmSciTech 2021; 23:8. [PMID: 34853934 DOI: 10.1208/s12249-021-02153-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer treatment is challenging due to the tumour heterogeneity that makes personalized medicine a suitable technique for providing better cancer treatment. Personalized medicine analyses patient-related factors like genetic make-up and lifestyle and designs treatments that offer the benefits of reduced side effects and efficient drug delivery. Personalized medicine aims to provide a holistic way for prevention, diagnosis and treatment. The customization desired in personalized medicine is produced accurately by 3D printing which is an established technique known for its precision. Different 3D printing techniques exhibit their capability in producing cancer-specific medications for breast, liver, thyroid and kidney tumours. Three-dimensional printing displays major influence on cancer modelling and studies using cancer models in treatment and diagnosis. Three-dimensional printed personalized tumour models like physical 3D models, bioprinted models and tumour-on-chip models demonstrate better in vitro and in vivo correlation in drug screening, cancer metastasis and prognosis studies. Three-dimensional printing helps in cancer modelling; moreover, it has also changed the facet of cancer treatment. Improved treatment via custom-made 3D printed devices, implants and dosage forms ensures the delivery of anticancer agents efficiently. This review covers recent applications of 3D printed personalized medicine in various cancer types and comments on the possible future directions like application of 4D printing and regularization of 3D printed personalized medicine in healthcare.
Collapse
|
4
|
Abstract
Layer-by-layer deposition of cells, tissues and similar molecules provided by additive manufacturing techniques such as 3D bioprinting offers safe, biocompatible, effective and inert methods for the production of biological structures and biomimetic scaffolds. 3D bioprinting assisted through computer programmes and software develops mutli-modal nano- or micro-particulate systems such as biosensors, dosage forms or delivery systems and other biological scaffolds like pharmaceutical implants, prosthetics, etc. This review article focuses on the implementation of 3D bioprinting techniques in the gene expression, in gene editing or therapy and in delivery of genes. The applications of 3D printing are extensive and include gene therapy, modulation and expression in cancers, tissue engineering, osteogenesis, skin and vascular regeneration. Inclusion of nanotechnology with genomic bioprinting parameters such as gene conjugated or gene encapsulated 3D printed nanostructures may offer new avenues in the future for efficient and controlled treatment and help in overcoming the limitations faced in conventional methods. Moreover, expansion of the benefits from such techniques is advantageous in real-time delivery or in-situ production of nucleic acids into the host cells.
Collapse
|
5
|
Ahangar P, Akoury E, Ramirez Garcia Luna AS, Nour A, Weber MH, Rosenzweig DH. Nanoporous 3D-Printed Scaffolds for Local Doxorubicin Delivery in Bone Metastases Secondary to Prostate Cancer. MATERIALS 2018; 11:ma11091485. [PMID: 30134523 PMCID: PMC6165313 DOI: 10.3390/ma11091485] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/28/2022]
Abstract
The spine is the most common site of bone metastasis, often originating from prostate, lung, and breast cancers. High systemic doses of chemotherapeutics such as doxorubicin (DOX), cisplatin, or paclitaxel often have severe side effects. Surgical removal of spine metastases also leaves large defects which cannot spontaneously heal and require bone grafting. To circumvent these issues, we designed an approach for local chemotherapeutic delivery within 3D-printed scaffolds which could also potentially serve as a bone substitute. Direct treatment of prostate cancer cell line LAPC4 and patient derived spine metastases cells with 0.01 µM DOX significantly reduced metabolic activity, proliferation, migration, and spheroid growth. We then assessed uptake and release of DOX in a series of porous 3D-printed scaffolds on LAPC4 cells as well as patient-derived spine metastases cells. Over seven days, 60–75% of DOX loaded onto scaffolds could be released, which significantly reduced metabolic activity and proliferation of both LAPC4 and patient derived cells, while unloaded scaffolds had no effect. Porous 3D-printed scaffolds may provide a novel and inexpensive approach to locally deliver chemotherapeutics in a patient-specific manner at tumor resection sites. With a composite design to enhance strength and promote sustained drug release, the scaffolds could reduce systemic negative effects, enhance bone repair, and improve patient outcomes.
Collapse
Affiliation(s)
- Pouyan Ahangar
- Division of Orthopedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada.
| | - Elie Akoury
- Division of Orthopedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada.
| | - Ana Sofia Ramirez Garcia Luna
- Division of Orthopedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada.
- Medical Faculty Mannheim, Heidelberg University, D-68167 Heidelberg, Germany.
| | - Antone Nour
- Division of Orthopedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada.
| | - Michael H Weber
- Division of Orthopedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada.
- The Research Institute of the McGill University Health Centre, Montreal, QC H3H 2L9, Canada.
| | - Derek H Rosenzweig
- Division of Orthopedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada.
- The Research Institute of the McGill University Health Centre, Montreal, QC H3H 2L9, Canada.
- Montreal General Hospital C10.148.6, 1650 Cedar Ave, Montreal, QC H3G 1A4, Canada.
| |
Collapse
|
6
|
Sun M, Chen M, Wang M, Hansen J, Baatrup A, Dagnaes-Hansen F, Rölfing JHD, Jensen J, Lysdahl H, Li H, Johannsen M, Le DQS, Kjems J, Bünger CE. In vivo drug release behavior and osseointegration of a doxorubicin-loaded tissue-engineered scaffold. RSC Adv 2016. [DOI: 10.1039/c6ra05351c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This pre-clinical study presented a dual function of a doxorubicin-loaded scaffold for both chemotherapeutic agent delivery and bone formation.
Collapse
Affiliation(s)
- M. Sun
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
| | - M. Chen
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- Denmark
| | - M. Wang
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
| | - J. Hansen
- Department of Forensic Medicine
- Aarhus University
- Denmark
| | - A. Baatrup
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
| | | | | | - J. Jensen
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
| | - H. Lysdahl
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
| | - H. Li
- Spine Section
- Department of Orthopaedic Surgery
- Aarhus University Hospital
- Denmark
| | - M. Johannsen
- Department of Forensic Medicine
- Aarhus University
- Denmark
| | - D. Q. S. Le
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
| | - J. Kjems
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- Denmark
| | - C. E. Bünger
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
- Spine Section
- Department of Orthopaedic Surgery
| |
Collapse
|