Argudo PG, Contreras-Montoya R, Álvarez de Cienfuegos L, Martín-Romero MT, Camacho L, Giner-Casares JJ. Subtle chemical modification for enrichment of Fmoc-amino acid at a phospholipid interface.
RSC Adv 2019;
9:37188-37194. [PMID:
35542247 PMCID:
PMC9075599 DOI:
10.1039/c9ra03896e]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/06/2019] [Indexed: 11/24/2022] Open
Abstract
Amino acids including the Fmoc group (9-fluorenylmethyloxycarbonyl) are bioinspired molecules that display intriguing features in self-assembly and biological applications. The influence of a delicate chemical modification between Fmoc-F and Fmoc-Y on the interaction with a phospholipid surface was analyzed. Langmuir monolayers of the 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA) phospholipid were used to mimic the eukaryotic cell membrane. In situ Brewster angle microscopy and UV-vis reflection spectroscopy provided insights on the effect of the Fmoc-amino acid derivatives on the DMPA phospholipid. The formation of H-bonds between the Fmoc-Y and the DMPA molecules was assessed, demonstrating the crucial role of the hydroxyl group of Fmoc-Y in enhancing the interaction with biosurfaces.
A modest chemical modification of the Fmoc-amino acids led to enhanced interaction with a model surface for biomembrane.![]()
Collapse