1
|
Movafaghi S, Vallabhuneni S, Wang W, Jathar S, Kota AK. Rapid and Onsite Detection of Fuel Adulteration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37327459 DOI: 10.1021/acs.langmuir.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In numerous developing countries, the lower cost of subsidized liquid fuels such as kerosene compared to market-rate fuels often results in fuel adulteration. Such misuse of kerosene is hard to detect with conventional detection technologies because they are either time consuming, expensive, not sensitive enough or require well-equipped analytical laboratories. In this work, we developed an inexpensive and easy-to-use device for rapid and onsite detection of fuel adulteration. The working principle of our fuel adulteration detection is sensing changes in the mobility of fuel droplets on non-textured (i.e., smooth) and non-polar solid surfaces. Using our device, we demonstrated rapid detection of diesel (market-rate fuel) adulterated with kerosene (subsidized fuel) at concentrations an order of magnitude below typical adulteration concentrations. We envision that our inexpensive, easy-to-use, and field-deployable device as well as the design strategy will pave the way for novel fuel quality sensors.
Collapse
Affiliation(s)
- Sanli Movafaghi
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sravanthi Vallabhuneni
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Wei Wang
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Shantanu Jathar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Arun K Kota
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Rawlinson JM, Cox HJ, Hopkins G, Cahill P, Badyal JPS. Nature-Inspired Trapped Air Cushion Surfaces for Environmentally Sustainable Antibiofouling. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Nuthalapati K, Sheng YJ, Tsao HK. Abnormal wetting dynamics of Silwet-laden droplets on partially wetting substrates. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Mérai L, Deák Á, Dékány I, Janovák L. Fundamentals and utilization of solid/ liquid phase boundary interactions on functional surfaces. Adv Colloid Interface Sci 2022; 303:102657. [PMID: 35364433 DOI: 10.1016/j.cis.2022.102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
The affinity of macroscopic solid surfaces or dispersed nano- and bioparticles towards liquids plays a key role in many areas from fluid transport to interactions of the cells with phase boundaries. Forces between solid interfaces in water become especially important when the surface texture or particles are in the colloidal size range. Although, solid-liquid interactions are still prioritized subjects of materials science and therefore are extensively studied, the related literature still lacks in conclusive approaches, which involve as much information on fundamental aspects as on recent experimental findings related to influencing the wetting and other wetting-related properties and applications of different surfaces. The aim of this review is to fill this gap by shedding light on the mechanism-of-action and design principles of different, state-of-the-art functional macroscopic surfaces, ranging from self-cleaning, photoreactive or antimicrobial coatings to emulsion separation membranes, as these surfaces are gaining distinguished attention during the ongoing global environmental and epidemic crises. As there are increasing numbers of examples for stimulus-responsive surfaces and their interactions with liquids in the literature, as well, this overview also covers different external stimulus-responsive systems, regarding their mechanistic principles and application possibilities.
Collapse
|
5
|
Peppou-Chapman S, Hong JK, Waterhouse A, Neto C. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem Soc Rev 2020; 49:3688-3715. [DOI: 10.1039/d0cs00036a] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We review the rational choice, the analysis, the depletion and the properties imparted by the liquid layer in liquid-infused surfaces – a new class of low-adhesion surface.
Collapse
Affiliation(s)
- Sam Peppou-Chapman
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Jun Ki Hong
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Anna Waterhouse
- The University of Sydney Nano Institute
- The University of Sydney
- Australia
- Central Clinical School
- Faculty of Medicine and Health
| | - Chiara Neto
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| |
Collapse
|
6
|
Kasapgil E, Anac I, Erbil H. Transparent, fluorine-free, heat-resistant, water repellent coating by infusing slippery silicone oil on polysiloxane nanofilament layers prepared by gas phase reaction of n-propyltrichlorosilane and methyltrichlorosilane. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.09.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Singh V, Wu CJ, Sheng YJ, Tsao HK. Self-Propulsion and Shape Restoration of Aqueous Drops on Sulfobetaine Silane Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6182-6191. [PMID: 28551998 DOI: 10.1021/acs.langmuir.7b01120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The motion of droplets on typical surfaces is generally halted by contact line pinning associated with contact angle hysteresis. In this study, it was shown that, on a zwitterionic sulfobetaine silane (SBSi)-coated surface, aqueous drops with appropriate solutes can demonstrate hysteresis-free behavior, whereas a pure water drop shows spontaneous spreading. By adding solutes such as polyethylene glycol, 2(2-butoxy ethoxy) ethanol, or sodium n-dodecyl sulfate, an aqueous drop with a small contact angle (disappearance of spontaneous spreading) was formed on SBSi surfaces. The initial drop shape was readily relaxed back to a circular shape (hysteresis-free behavior), even upon severe disturbances. Moreover, it was interesting to observe the self-propulsion of such a drop on horizontal SBSi surfaces in the absence of externally provided stimuli. The self-propelled drop tends to follow a random trajectory, and the continuous movement can last for at least 10 min. This self-propelled random motion can be attributed to the combined effects of the hysteresis-free surface and the Marangoni stress. The former comes from the total wetting property of the surface, while the latter originates from surface tension gradient due to fluctuating evaporation rates along the drop border.
Collapse
Affiliation(s)
- Vickramjeet Singh
- Department of Chemical and Materials Engineering, National Central University , Jhongli 320, Taiwan
| | - Cyuan-Jhang Wu
- Department of Chemical and Materials Engineering, National Central University , Jhongli 320, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University , Taipei 106, Taiwan
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University , Jhongli 320, Taiwan
| |
Collapse
|
8
|
Wu CJ, Chang CC, Sheng YJ, Tsao HK. Extraordinarily Rapid Rise of Tiny Bubbles Sliding beneath Superhydrophobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1326-1331. [PMID: 28079380 DOI: 10.1021/acs.langmuir.6b04645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tiny bubbles readily stick onto substrates owing to contact angle hysteresis (CAH). Nevertheless, they can slide slowly on a tilted surface with ultralow CAH because capillarity is overcome by buoyancy. It is surprising to observe experimentally that bubbles of 3-15 μL (diameter 1.79-3.06 mm) slide beneath a tilted superhydrophobic surface at a vertical ascent rate faster than that of freely rising ones of high Reynold numbers ≈O(102). As the tilting angle increases, the drag coefficient remains essentially the same as that of a freely rising bubble, but the frontal area of the flat bubble rises monotonically. Nonetheless, the frontal area of the sliding bubble always stays much smaller than that of a freely rising bubble. Consequently, the small drag force associated with the sliding bubbles is attributed to their substantially small frontal areas on superhydrophobic surfaces.
Collapse
Affiliation(s)
| | - Cheng-Chung Chang
- Department of Chemical Engineering, National Taiwan University , Taipei 106, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University , Taipei 106, Taiwan
| | | |
Collapse
|
9
|
Chang CC, Wu CJ, Sheng YJ, Tsao HK. Resisting and pinning of a nanodrop by trenches on a hysteresis-free surface. J Chem Phys 2016; 145:164702. [DOI: 10.1063/1.4965432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
10
|
Liang YE, Weng YH, Tsao HK, Sheng YJ. Meniscus Shape and Wetting Competition of a Drop between a Cone and a Plane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8543-8549. [PMID: 27483140 DOI: 10.1021/acs.langmuir.6b01990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The formation of a liquid bridge between a cone and a plane is related to dip-pen nanolithography. The meniscus shape and rupture process of a liquid meniscus between a cone and a plane are investigated by Surface Evolver, many-body dissipative particle dynamics, and macroscopic experiments. Dependent on the cone geometry, cone-plane separation, and wetting properties of cone and plane, three types of menisci can be observed before rupture and two types of wetting competition outcomes are seen after breakup. It is interesting to find that after rupture, the bulk of the liquid bridge volume is not necessarily retained by the cone which is more wettable. In fact, a sharp hydrophilic cone often loses wetting competition to a hydrophobic plane. To explain our findings, the "apparent" contact angle of the cone is introduced and the behavior of drop-on-cone/plane system is analogous to that of a liquid bridge between two parallel planes based on this concept.
Collapse
Affiliation(s)
- Yu-En Liang
- Department of Chemical Engineering, National Taiwan University , Taipei, Taiwan 10617
| | - Yu-Hsuan Weng
- Department of Chemical Engineering, National Taiwan University , Taipei, Taiwan 10617
| | | | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University , Taipei, Taiwan 10617
| |
Collapse
|