1
|
Nowrouzi B, Torres-Montero P, Kerkhoven EJ, Martínez JL, Rios-Solis L. Rewiring Saccharomyces cerevisiae metabolism for optimised Taxol® precursors production. Metab Eng Commun 2024; 18:e00229. [PMID: 38098801 PMCID: PMC10716015 DOI: 10.1016/j.mec.2023.e00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 11/04/2023] [Indexed: 12/17/2023] Open
Abstract
Saccharomyces cerevisiae has been conveniently used to produce Taxol® anticancer drug early precursors. However, the harmful impact of oxidative stress by the first cytochrome P450-reductase enzymes (CYP725A4-POR) of Taxol® pathway has hampered sufficient progress in yeast. Here, we evolved an oxidative stress-resistant yeast strain with three-fold higher titre of their substrate, taxadiene. The performance of the evolved and parent strains were then evaluated in galactose-limited chemostats before and under the oxidative stress by an oxidising agent. The interaction of evolution and oxidative stress was comprehensively evaluated through transcriptomics and metabolite profiles integration in yeast enzyme-constrained genome scale model. Overall, the evolved strain showed improved respiration, reduced overflow metabolites production and oxidative stress re-induction tolerance. The cross-protection mechanism also potentially contributed to better heme, flavin and NADPH availability, essential for CYP725A4 and POR optimal activity in yeast. The results imply that the evolved strain is a robust cell factory for future efforts towards Taxol© production.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Pablo Torres-Montero
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Eduard J. Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- SciLifeLab, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - José L. Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
2
|
Liu JCT, De La Peña R, Tocol C, Sattely ES. Reconstitution of early paclitaxel biosynthetic network. Nat Commun 2024; 15:1419. [PMID: 38360800 PMCID: PMC10869802 DOI: 10.1038/s41467-024-45574-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Paclitaxel is an anticancer therapeutic produced by the yew tree. Over the last two decades, a significant bottleneck in the reconstitution of early paclitaxel biosynthesis has been the propensity of heterologously expressed pathway cytochromes P450, including taxadiene 5α-hydroxylase (T5αH), to form multiple products. Here, we structurally characterize four new products of T5αH, many of which appear to be over-oxidation of the primary mono-oxidized products. By tuning the promoter strength for T5αH expression in Nicotiana plants, we observe decreased levels of these proposed byproducts with a concomitant increase in the accumulation of taxadien-5α-ol, the paclitaxel precursor, by three-fold. This enables the reconstitution of a six step biosynthetic pathway, which we further show may function as a metabolic network. Our result demonstrates that six previously characterized Taxus genes can coordinatively produce key paclitaxel intermediates and serves as a crucial platform for the discovery of the remaining biosynthetic genes.
Collapse
Affiliation(s)
| | - Ricardo De La Peña
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Christian Tocol
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Zhao Y, Liang F, Xie Y, Duan YT, Andeadelli A, Pateraki I, Makris AM, Pomorski TG, Staerk D, Kampranis SC. Oxetane Ring Formation in Taxol Biosynthesis Is Catalyzed by a Bifunctional Cytochrome P450 Enzyme. J Am Chem Soc 2024; 146:801-810. [PMID: 38129385 DOI: 10.1021/jacs.3c10864] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Taxol is a potent drug used in various cancer treatments. Its complex structure has prompted extensive research into its biosynthesis. However, certain critical steps, such as the formation of the oxetane ring, which is essential for its activity, have remained unclear. Previous proposals suggested that oxetane formation follows the acetylation of taxadien-5α-ol. Here, we proposed that the oxetane ring is formed by cytochrome P450-mediated oxidation events that occur prior to C5 acetylation. To test this hypothesis, we analyzed the genomic and transcriptomic information for Taxus species to identify cytochrome P450 candidates and employed two independent systems, yeast (Saccharomyces cerevisiae) and plant (Nicotiana benthamiana), for their characterization. We revealed that a single enzyme, CYP725A4, catalyzes two successive epoxidation events, leading to the formation of the oxetane ring. We further showed that both taxa-4(5)-11(12)-diene (endotaxadiene) and taxa-4(20)-11(12)-diene (exotaxadiene) are precursors to the key intermediate, taxologenic oxetane, indicating the potential existence of multiple routes in the Taxol pathway. Thus, we unveiled a long-elusive step in Taxol biosynthesis.
Collapse
Affiliation(s)
- Yong Zhao
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Feiyan Liang
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Yuman Xie
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Yao-Tao Duan
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Aggeliki Andeadelli
- Institute of Applied Biosciences, Centre for Research & Technology, Hellas (CERTH), Thessaloniki 57001, Greece
- Department of Food Science and Nutrition, University of the Aegean, Myrina 81100, Lemnos, Greece
| | - Irini Pateraki
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Antonios M Makris
- Institute of Applied Biosciences, Centre for Research & Technology, Hellas (CERTH), Thessaloniki 57001, Greece
| | - Thomas G Pomorski
- Transport Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Sotirios C Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| |
Collapse
|
4
|
Chun-Ting Liu J, De La Pena R, Tocol C, Sattely ES. Reconstitution of Early Paclitaxel Biosynthetic Network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559859. [PMID: 37808792 PMCID: PMC10557666 DOI: 10.1101/2023.09.27.559859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Paclitaxel is an anticancer therapeutic produced by the yew tree. Over the last two decades, a significant bottleneck in the reconstitution of early paclitaxel biosynthesis has been the propensity of heterologously expressed pathway cytochromes P450, including taxadiene 5α-hydroxylase (T5αH), to form multiple products. This diverts metabolic flux away from the paclitaxel precursor, taxadien-5α-ol, thus previous attempts of reconstitution have not yielded sufficient material for characterization, regardless of the heterologous host. Here, we structurally characterized four new products of T5αH, many of which appear to be over-oxidation of the primary mono-oxidized products. By tuning the promoter strength for T5αH expression, levels of these proposed byproducts decrease with a concomitant increase in the accumulation of taxadien-5α-ol by four-fold. This engineered system enabled the reconstitution of a six step biosynthetic pathway to produce isolatable 5α,10β-diacetoxy-taxadien-13α-ol. Furthermore, we showed that this pathway may function as a metabolic network rather than a linear pathway. The engineering of the paclitaxel biosynthetic network demonstrates that Taxus genes can coordinatively function for the biosynthetic production of key early stage paclitaxel intermediates and serves as a crucial platform for the discovery of the remaining biosynthetic genes.
Collapse
Affiliation(s)
- Jack Chun-Ting Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ricardo De La Pena
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Christian Tocol
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Scesa PD, Schmidt EW. Biomimetic Approach to Diverse Coral Diterpenes from a Biosynthetic Scaffold. Angew Chem Int Ed Engl 2023; 62:e202311406. [PMID: 37585679 PMCID: PMC10529532 DOI: 10.1002/anie.202311406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
Thousands of coral terpenes originate from simple scaffolds that undergo oxidative tailoring. While corals are excellent sources of drug leads, the challenge of supplying structurally complex drug leads from marine organisms has sometimes slowed their development. Making this even more challenging, in comparison to other organisms, such as plants and microbes, for which the terpene literature is substantial, very little is known about how the unique coral terpenes are biosynthesized and elaborated in nature. In this study, we used a semisynthetic strategy to produce at gram scale in yeast the eunicellane scaffold that underlies >200 coral compounds. Synthetic oxidation reactions were explored, generating key scaffolds that reflect three of the four structural classes derived from eunicellane and enabling the first asymmetric syntheses of the natural products solenopodin C and klysimplexin Q. Biomimetic methods and detailed mechanistic studies of synthetic reactions shed light on potential enzymological reactivity, including the role of epoxide rearrangement in eunicellane biosynthesis.
Collapse
Affiliation(s)
- Paul D Scesa
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
Nowrouzi B, Lungang L, Rios-Solis L. Exploring optimal Taxol® CYP725A4 activity in Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:197. [PMID: 36123694 PMCID: PMC9484169 DOI: 10.1186/s12934-022-01922-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background CYP725A4 catalyses the conversion of the first Taxol® precursor, taxadiene, to taxadiene-5α-ol (T5α-ol) and a range of other mono- and di-hydroxylated side products (oxygenated taxanes). Initially known to undergo a radical rebound mechanism, the recent studies have revealed that an intermediate epoxide mediates the formation of the main characterised products of the enzyme, being T5α-ol, 5(12)-oxa-3(11)-cyclotaxane (OCT) and its isomer, 5(11)-oxa-3(11)-cyclotaxane (iso-OCT) as well as taxadienediols. Besides the high side product: main product ratio and the low main product titre, CYP725A4 is also known for its slow enzymatic activity, massively hindering further progress in heterologous production of Taxol® precursors. Therefore, this study aimed to systematically explore the key parameters for improving the regioselectivity and activity of eukaryotic CYP725A4 enzyme in a whole-cell eukaryotic biocatalyst, Saccharomyces cerevisiae. Results Investigating the impact of CYP725A4 and reductase gene dosages along with construction of self-sufficient proteins with strong prokaryotic reductases showed that a potential uncoupling event accelerates the formation of oxygenated taxane products of this enzyme, particularly the side products OCT and iso-OCT. Due to the harmful effect of uncoupling products and the reactive metabolites on the enzyme, the impact of flavins and irons, existing as prosthetic groups in CYP725A4 and reductase, were examined in both their precursor and ready forms, and to investigate the changes in product distribution. We observed that the flavin adenine dinucleotide improved the diterpenoids titres and biomass accumulation. Hemin was found to decrease the titre of iso-OCT and T5α-ol, without impacting the side product OCT, suggesting the latter being the major product of CYP725A4. The interaction between this iron and the iron precursor, δ-Aminolevulinic acid, seemed to improve the production of these diterpenoids, further denoting that iso-OCT and T5α-ol were the later products. While no direct correlation between cellular-level oxidative stress and oxygenated taxanes was observed, investigating the impact of salt and antioxidant on CYP725A4 further showed the significant drop in OCT titre, highlighting the possibility of enzymatic-level uncoupling event and reactivity as the major mechanism behind the enzyme activity. To characterise the product spectrum and production capacity of CYP725A4 in the absence of cell growth, resting cell assays with optimal neutral pH revealed an array of novel diterpenoids along with higher quantities of characterised diterpenoids and independence of the oxygenated product spectra from the acidity effect. Besides reporting on the full product ranges of CYP725A4 in yeast for the first time, the highest total taxanes of around 361.4 ± 52.4 mg/L including 38.1 ± 8.4 mg/L of T5α-ol was produced herein at a small, 10-mL scale by resting cell assay, where the formation of some novel diterpenoids relied on the prior existence of other diterpenes/diterpenoids as shown by statistical analyses. Conclusions This study shows how rational strain engineering combined with an efficient design of experiment approach systematically uncovered the promoting effect of uncoupling for optimising the formation of the early oxygenated taxane precursors of Taxol®. The provided strategies can effectively accelerate the design of more efficient Taxol®-producing yeast strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01922-1.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK
| | - Liang Lungang
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK. .,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK. .,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
7
|
Abstract
Taxol is one of the most famous natural diterpenoids and an important anticancer medicine. Taxol represents a formidable synthetic challenge and has prompted significant interest from the synthetic community. However, in all the previous syntheses of Taxol, there have been no reports of closing the desired eight-membered ring through C1-C2 bond formation. Furthermore, the existence of Taxol-resistant tumors and side effects of Taxol make the development of new approaches to synthesize Taxol and its derivatives highly desirable. Here, we report the asymmetric total synthesis of Taxol using a concise approach through 19 isolated intermediates. The synthetically challenging eight-membered ring was constructed efficiently by a diastereoselective intramolecular SmI2-mediated pinacol coupling reaction to form the C1-C2 bond. The unique biomimetic oxygen ene reaction and the newly developed facile tandem C2-benzoate formation and C13 side chain installation improved the efficiency of the synthesis. The mild oxygen ene reaction under light conditions would be an alternative reaction involved in Taxol biosynthesis. This new convergent approach will allow the diverse creation of Taxol derivatives to enable further biological research.
Collapse
Affiliation(s)
- Ya-Jian Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen-Chen Gu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Feng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Mutanda I, Li J, Xu F, Wang Y. Recent Advances in Metabolic Engineering, Protein Engineering, and Transcriptome-Guided Insights Toward Synthetic Production of Taxol. Front Bioeng Biotechnol 2021; 9:632269. [PMID: 33614616 PMCID: PMC7892896 DOI: 10.3389/fbioe.2021.632269] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
The diterpenoid paclitaxel (Taxol®) is a blockbuster anticancer agent that was originally isolated from the Pacific yew (Taxus brevifolia) five decades ago. Despite the wealth of information gained over the years on Taxol research, there still remains supply issues to meet increasing clinical demand. Although alternative Taxol production methods have been developed, they still face several drawbacks that cause supply shortages and high production costs. It is highly desired to develop biotechnological production platforms for Taxol, however, there are still gaps in our understanding of the biosynthetic pathway, catalytic enzymes, regulatory and control mechanisms that hamper production of this critical drug by synthetic biology approaches. Over the past 5 years, significant advances were made in metabolic engineering and optimization of the Taxol pathway in different hosts, leading to accumulation of taxane intermediates. Computational and experimental approaches were leveraged to gain mechanistic insights into the catalytic cycle of pathway enzymes and guide rational protein engineering efforts to improve catalytic fitness and substrate/product specificity, especially of the cytochrome P450s (CYP450s). Notable breakthroughs were also realized in engineering the pathway in plant hosts that are more promising in addressing the challenging CYP450 chemistry. Here, we review these recent advances and in addition, we summarize recent transcriptomic data sets of Taxus species and elicited culture cells, and give a bird's-eye view of the information that can be gleaned from these publicly available resources. Recent mining of transcriptome data sets led to discovery of two putative pathway enzymes, provided many lead candidates for the missing steps and provided new insights on the regulatory mechanisms governing Taxol biosynthesis. All these inferences are relevant to future biotechnological production of Taxol.
Collapse
Affiliation(s)
- Ishmael Mutanda
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fanglin Xu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, He’nan University, Kaifeng, China
| | - Yong Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Nazhand A, Durazzo A, Lucarini M, Mobilia MA, Omri B, Santini A. Rewiring cellular metabolism for heterologous biosynthesis of Taxol. Nat Prod Res 2019; 34:110-121. [DOI: 10.1080/14786419.2019.1630122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Amirhossein Nazhand
- Biotechnology Department, Sari University of Agricultural Sciences and Natural Resources, Mazandaran, Sari, Iran
| | | | | | | | - Besma Omri
- Laboratory of Improvement & Integrated Development of Animal Productivity & Food Resources, Higher School of Agriculture of Mateur, University of Carthage, Bizerte, Tunisia
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| |
Collapse
|
10
|
You LF, Huang JJ, Lin SL, Wei T, Zheng QW, Jiang BH, Lin JF, Guo LQ. In vitro enzymatic synthesis of baccatin III with novel and cheap acetyl donors by the recombinant taxoid 10β-O-acetyl transferase. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2018.1549235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lin-Feng You
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecule, Chongqing Technology and Business University, Chongqing, China
| | - Jia-Jun Huang
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
| | - Shu-Ling Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
| | - Tao Wei
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Qian-Wang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Bing-Hua Jiang
- Department of Pathology Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jun-Fang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Li-Qiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
11
|
Reddy DS, Corey EJ. Enantioselective Conversion of Oligoprenol Derivatives to Macrocycles in the Germacrene, Cembrene, and 18-Membered Cyclic Sesterterpene Series. J Am Chem Soc 2018; 140:16909-16913. [PMID: 30466258 DOI: 10.1021/jacs.8b10522] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A new enantio-and diastereoselective process has been developed for the efficient conversion of farnesol and other oligoprenyl alcohols to chiral 10-, 14-, and 18-membered cyclization products, including germacrenol, (+)-costunolide, 3-β-elemol, and epi-mukulol. The key cyclization reaction utilizes ω-bromo aldehyde substrates, a chiral ligand, and indium powder as the reagent at -78 °C and generates 10-, 14-, and 18-membered cyclic products in 70-74% yield and 94-95% ee.
Collapse
Affiliation(s)
- D Srinivas Reddy
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - E J Corey
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
12
|
Sagwan-Barkdoll L, Anterola AM. Taxadiene-5α-ol is a minor product of CYP725A4 when expressed in Escherichia coli. Biotechnol Appl Biochem 2018; 65:294-305. [PMID: 28876471 PMCID: PMC5839926 DOI: 10.1002/bab.1606] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/02/2017] [Indexed: 11/11/2022]
Abstract
CYP725A4 is a P450 enzyme from Taxus cuspidata that catalyzes the formation of taxadiene-5α-ol (T5α-ol) from taxadiene in paclitaxel biosynthesis. Past attempts expressing CYP725A4 in heterologous hosts reported the formation of 5(12)-oxa-3(11)-cyclotaxane (OCT) and/or 5(11)-oxa-3(11)-cyclotaxane (iso-OCT) instead of, or in addition to, T5α-ol. Here, we report that T5α-ol is produced as a minor product by Escherichia coli expressing both taxadiene synthase and CYP725A4. The major products were OCT and iso-OCT, while trace amounts of unidentified monooxygenated taxanes were also detected by gas chromatography-mass spectrometry. Since OCT and iso-OCT had not been found in nature, we tested the hypothesis that protein-protein interaction of CYP725A4 with redox partners, such as cytochrome P450 reductase (CPR) and cytochrome b5, may affect the products formed by CYP725A4, possibly favoring the formation of T5α-ol over OCT and iso-OCT. Our results show that coexpression of CYP725A4 with CPR from different organisms did not change the relative ratios of OCT, iso-OCT, and T5α-ol, while cytochrome b5 decreased overall levels of the products formed. Although unsuccessful in finding conditions that promote T5α-ol formation over other products, we used our results to clarify conflicting claims in the literature and discuss other possible approaches to produce paclitaxel via metabolic and enzyme engineering.
Collapse
Affiliation(s)
- Laxmi Sagwan-Barkdoll
- Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Aldwin M. Anterola
- Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
13
|
Banerjee A, Hamberger B. P450s controlling metabolic bifurcations in plant terpene specialized metabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:81-111. [PMID: 29563859 PMCID: PMC5842272 DOI: 10.1007/s11101-017-9530-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/20/2017] [Indexed: 05/18/2023]
Abstract
ABSTRACT Catalyzing stereo- and regio-specific oxidation of inert hydrocarbon backbones, and a range of more exotic reactions inherently difficult in formal chemical synthesis, cytochromes P450 (P450s) offer outstanding potential for biotechnological engineering. Plants and their dazzling diversity of specialized metabolites have emerged as rich repository for functional P450s with the advances of deep transcriptomics and genome wide discovery. P450s are of outstanding interest for understanding chemical diversification throughout evolution, for gaining mechanistic insights through the study of their structure-function relationship, and for exploitation in Synthetic Biology. In this review, we highlight recent developments and examples in the discovery of plant P450s involved in the biosynthesis of industrially relevant monoterpenoids, sesquiterpenoids, diterpenoids and triterpenoids, throughout 2016 and early 2017. Examples were selected to illustrate the spectrum of value from commodity chemicals, flavor and fragrance compounds to pharmacologically active terpenoids. We focus on a recently emerging theme, where P450s control metabolic bifurcations and chemical diversity of the final product profile, either within a pathway, or through neo-functionalization in related species. The implications may inform approaches for rational assembly of recombinant pathways, biotechnological production of high value terpenoids and generation of novel chemical entities.
Collapse
Affiliation(s)
- Aparajita Banerjee
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824 USA
| | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824 USA
| |
Collapse
|
14
|
Aboagye E, Alger K, Archibald S, Bakar N, Barton N, Bergare J, Bloom J, Bragg R, Burke B, Burns M, Carroll L, Calatayud D, Cawthorne C, Cortezon-Tamarit F, Crean C, Crump M, Dilworth J, Domarkas J, Duckett S, Eggleston I, Elmore C, van Es E, Fekete M, Goodwin M, Green G, Grönberg G, Hayes C, Hayes M, Hollis S, Hueting R, Ivanov P, Johnston G, Kerr W, Kohler A, Knox G, Lawrie K, Lee R, Lewis W, Lin B, Lockley W, López-Torres E, Lv K, Maddocks S, Marsh B, Mendiola A, Mirabello V, Miranda C, Norcott P, O'Hagan D, Olaru A, Pascu S, Rayner P, Read D, Ridge K, Ritter T, Roberts I, Samuri N, Sarpaki S, Somers D, Taylor R, Tuttle T, Varcoe J, Willis C. Abstracts of the 25th
International Isotope Society (UK Group) symposium: Synthesis and applications of labelled compounds 2016. J Labelled Comp Radiopharm 2017. [DOI: 10.1002/jlcr.3523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Edgar S, Li FS, Qiao K, Weng JK, Stephanopoulos G. Engineering of Taxadiene Synthase for Improved Selectivity and Yield of a Key Taxol Biosynthetic Intermediate. ACS Synth Biol 2017; 6:201-205. [PMID: 27794603 DOI: 10.1021/acssynbio.6b00206] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Attempts at microbial production of the chemotherapeutic agent Taxol (paclitaxel) have met with limited success, due largely to a pathway bottleneck resulting from poor product selectivity of the first hydroxylation step, catalyzed by taxadien-5a-hydroxylase (CYP725A4). Here, we systematically investigate three methodologies, terpene cyclase engineering, P450 engineering, and hydrolase-enzyme screening to overcome this early pathway selectivity bottleneck. We demonstrate that engineering of Taxadiene Synthase, upstream of the promiscuous oxidation step, acts as a practical method for selectivity improvement. Through mutagenesis we achieve a 2.4-fold improvement in yield and selectivity for an alternative cyclization product, taxa-4(20)-11(12)-diene; and for the Taxol precursor taxadien-5α-ol, when coexpressed with CYP725A4. This works lays the foundation for the elucidation, engineering, and improved production of Taxol and early Taxol precursors.
Collapse
Affiliation(s)
| | - Fu-Shuang Li
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | | | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
16
|
Rouck JE, Biggs BW, Kambalyal A, Arnold WR, De Mey M, Ajikumar PK, Das A. Heterologous expression and characterization of plant Taxadiene-5α-Hydroxylase (CYP725A4) in Escherichia coli. Protein Expr Purif 2017; 132:60-67. [PMID: 28109855 DOI: 10.1016/j.pep.2017.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 10/11/2016] [Accepted: 01/17/2017] [Indexed: 01/05/2023]
Abstract
Taxadiene-5α-Hydroxylase (CYP725A4) is a membrane-bound plant cytochrome P450 that catalyzes the oxidation of taxadiene to taxadiene-5α-ol. This oxidation is a key step in the production of the valuable cancer therapeutic and natural plant product, taxol. In this work, we report the bacterial expression and purification of six different constructs of CYP725A4. All six of these constructs are N-terminally modified and three of them are fused to cytochrome P450 reductase to form a chimera construct. The construct with the highest yield of CYP725A4 protein was then selected for substrate binding and kinetic analysis. Taxadiene binding followed type-1 substrate patterns with an observed KD of 2.1 ± 0.4 μM. CYP725A4 was further incorporated into nanoscale lipid bilayers (nanodiscs) and taxadiene metabolism was measured. Taxadiene metabolism followed Michaelis-Menten kinetics with an observed Vmax of 30 ± 8 pmol/min/nmolCYP725A4 and a KM of 123 ± 52 μM. Additionally, molecular operating environment (MOE) modeling was performed in order to gain insight into the interactions of taxadiene with CYP725A4 active site. Taken together, we demonstrate the successful expression and purification of the functional membrane-bound plant CYP, CYP725A4, in E. coli.
Collapse
Affiliation(s)
- John Edward Rouck
- Department of Comparative Biosciences, Department of Biochemistry, Department of Bioengineering, Division of Nutritional Science, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Bradley Walters Biggs
- Manus Biosynthesis, 1030 Massachusetts Avenue, Suite 300, Cambridge, MA 02138, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Amogh Kambalyal
- Department of Comparative Biosciences, Department of Biochemistry, Department of Bioengineering, Division of Nutritional Science, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Comparative Biosciences, Department of Biochemistry, Department of Bioengineering, Division of Nutritional Science, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Marjan De Mey
- Centre for Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000, Belgium
| | | | - Aditi Das
- Department of Comparative Biosciences, Department of Biochemistry, Department of Bioengineering, Division of Nutritional Science, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|