1
|
Bayram AG, Schwarzendahl FJ, Löwen H, Biancofiore L. Motility-induced shear thickening in dense colloidal suspensions. SOFT MATTER 2023. [PMID: 37309209 DOI: 10.1039/d3sm00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phase transitions and collective dynamics of active colloidal suspensions are fascinating topics in soft matter physics, particularly for out-of-equilibrium systems, which can lead to rich rheological behaviours in the presence of steady shear flow. Here the role of self-propulsion in the rheological response of a dense colloidal suspension is investigated by using particle-resolved Brownian dynamics simulations. First, the combined effect of activity and shear in the solid on the disordering transition of the suspension is analyzed. While both self-propulsion and shear destroy order and melt the system if critical values are exceeded, self-propulsion largely lowers the stress barrier needed to be overcome during the transition. We further explore the rheological response of the active sheared system once a steady state is reached. While passive suspensions show a solid-like behaviour, turning on particle motility fluidises the system. At low self-propulsion, the active suspension behaves in the steady state as a shear-thinning fluid. Increasing the self-propulsion changes the behaviour of the liquid from shear-thinning to shear-thickening. We attribute this to clustering in the sheared suspensions induced by motility. This new phenomenon of motility-induced shear thickening (MIST) can be used to tailor the rheological response of colloidal suspensions.
Collapse
Affiliation(s)
- A Gülce Bayram
- FluidFrame Lab, Department of Mechanical Engineering, Bilkent University, Çankaya, 06800 Ankara, Turkey.
| | - Fabian Jan Schwarzendahl
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Luca Biancofiore
- FluidFrame Lab, Department of Mechanical Engineering, Bilkent University, Çankaya, 06800 Ankara, Turkey.
- Department of Mechanical Engineering, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
2
|
Xu Z, Ou Z. Direct Imaging of the Kinetic Crystallization Pathway: Simulation and Liquid-Phase Transmission Electron Microscopy Observations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2026. [PMID: 36903141 PMCID: PMC10004038 DOI: 10.3390/ma16052026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The crystallization of materials from a suspension determines the structure and function of the final product, and numerous pieces of evidence have pointed out that the classical crystallization pathway may not capture the whole picture of the crystallization pathways. However, visualizing the initial nucleation and further growth of a crystal at the nanoscale has been challenging due to the difficulties of imaging individual atoms or nanoparticles during the crystallization process in solution. Recent progress in nanoscale microscopy had tackled this problem by monitoring the dynamic structural evolution of crystallization in a liquid environment. In this review, we summarized several crystallization pathways captured by the liquid-phase transmission electron microscopy technique and compared the observations with computer simulation. Apart from the classical nucleation pathway, we highlight three nonclassical pathways that are both observed in experiments and computer simulations: formation of an amorphous cluster below the critical nucleus size, nucleation of the crystalline phase from an amorphous intermediate, and transition between multiple crystalline structures before achieving the final product. Among these pathways, we also highlight the similarities and differences between the experimental results of the crystallization of single nanocrystals from atoms and the assembly of a colloidal superlattice from a large number of colloidal nanoparticles. By comparing the experimental results with computer simulations, we point out the importance of theory and simulation in developing a mechanistic approach to facilitate the understanding of the crystallization pathway in experimental systems. We also discuss the challenges and future perspectives for investigating the crystallization pathways at the nanoscale with the development of in situ nanoscale imaging techniques and potential applications to the understanding of biomineralization and protein self-assembly.
Collapse
Affiliation(s)
- Zhangying Xu
- Qian Weichang College, Shanghai University, Shanghai 200444, China
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Bera A, Sahoo S, Thakur S, Das SK. Active particles in explicit solvent: Dynamics of clustering for alignment interaction. Phys Rev E 2022; 105:014606. [PMID: 35193229 DOI: 10.1103/physreve.105.014606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
We study the dynamics of clustering in systems containing active particles that are immersed in an explicit solvent. For this, we have adopted a hybrid simulation method, consisting of molecular dynamics and multiparticle collision dynamics. In our model, the overlap-avoiding passive interaction of an active particle with another active particle or a solvent particle has been taken care of via variants of the Lennard-Jones potential. Dynamic interactions among the active particles have been incorporated via a Vicsek-like alignment rule in self-propulsion that facilitates clustering. We quantify the effects of activity and importance of hydrodynamics on the dynamics of clustering via variations of relevant system parameters. Results are obtained for low overall density of active particles, for which the state point is close to the vapor branch of the coexistence curve, and thus the morphology consists of disconnected clusters. In such a situation, the mechanism of growth switches among particle diffusion, diffusive coalescence, and ballistic aggregation, depending upon the presence or absence of active and hydrodynamic interactions providing different kinds of mobilities to the clusters. Corresponding growth laws have been quantified and discussed in the context of appropriate theoretical pictures. Our results suggest that multiparticle collision dynamics is an effective method for the investigation of hydrodynamic phenomena in phase-separating active matter systems.
Collapse
Affiliation(s)
- Arabinda Bera
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Soudamini Sahoo
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
4
|
Jiang H, Hou Z. Nonequilibrium Dynamics of Chemically Active Particles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huijun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhonghuai Hou
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
5
|
Chakraborty S, Das SK. Relaxation in a phase-separating two-dimensional active matter system with alignment interaction. J Chem Phys 2020; 153:044905. [PMID: 32752724 DOI: 10.1063/5.0010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Via computer simulations, we study kinetics of pattern formation in a two-dimensional active matter system. Self-propulsion in our model is incorporated via the Vicsek-like activity, i.e., particles have the tendency of aligning their velocities with the average directions of motion of their neighbors. In addition to this dynamic or active interaction, there exists passive inter-particle interaction in the model for which we have chosen the standard Lennard-Jones form. Following quenches of homogeneous configurations to a point deep inside the region of coexistence between high and low density phases, as the systems exhibit formation and evolution of particle-rich clusters, we investigate properties related to the morphology, growth, and aging. A focus of our study is on the understanding of the effects of structure on growth and aging. To quantify the latter, we use the two-time order-parameter autocorrelation function. This correlation, as well as the growth, is observed to follow power-law time dependence, qualitatively similar to the scaling behavior reported for passive systems. The values of the exponents have been estimated and discussed by comparing with the previously obtained numbers for other dimensions as well as with the new results for the passive limit of the considered model. We have also presented results on the effects of temperature on the activity mediated phase separation.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
6
|
Affiliation(s)
| | - Chantal Valeriani
- Departamento de Física Aplicada I, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Angelo Cacciuto
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
7
|
Martínez-Pedrero F, Tierno P. Advances in colloidal manipulation and transport via hydrodynamic interactions. J Colloid Interface Sci 2018; 519:296-311. [PMID: 29505991 DOI: 10.1016/j.jcis.2018.02.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 01/31/2023]
Abstract
In this review article, we highlight many recent advances in the field of micromanipulation of colloidal particles using hydrodynamic interactions (HIs), namely solvent mediated long-range interactions. At the micrsocale, the hydrodynamic laws are time reversible and the flow becomes laminar, features that allow precise manipulation and control of colloidal matter. We focus on different strategies where externally operated microstructures generate local flow fields that induce the advection and motion of the surrounding components. In addition, we review cases where the induced flow gives rise to hydrodynamic bound states that may synchronize during the process, a phenomenon essential in different systems such as those that exhibit self-assembly and swarming.
Collapse
Affiliation(s)
- F Martínez-Pedrero
- Departamento de Química-Física I, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid 28040, Spain.
| | - P Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, E-08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia, IN(2)UB, Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
8
|
Feng M, Hou Z. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles. SOFT MATTER 2017; 13:4464-4481. [PMID: 28580481 DOI: 10.1039/c7sm00852j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a memory function equation for the time dependence of density fluctuations in nonequilibrium steady states. With the basic assumption of the absence of macroscopic currents and standard mode coupling approximation, we can obtain expressions for the irreducible memory function and other relevant dynamic terms, wherein the nonequilibrium character of the active system is manifested through an averaged diffusion coefficient D[combining macron] and a nontrivial structural function S2(q) with q being the magnitude of wave vector q. D[combining macron] and S2(q) enter the frequency term and the vertex term for the memory function, and thus influence both the short time and the long time dynamics of the system. With these equations obtained, we study the glassy dynamics of this thermal self-propelled particle system by investigating the Debye-Waller factor fq and relaxation time τα as functions of the persistence time τp of self-propulsion, the single particle effective temperature Teff as well as the number density ρ. Consequently, we find the critical density ρc for given τp shifts to larger values with increasing magnitude of propulsion force or effective temperature, in good accordance with previously reported simulation work. In addition, the theory facilitates us to study the critical effective temperature T for fixed ρ as well as its dependence on τp. We find that T increases with τp and in the limit τp → 0, it approaches the value for a simple passive Brownian system as expected. Our theory also well recovers the results for passive systems and can be easily extended to more complex systems such as active-passive mixtures.
Collapse
Affiliation(s)
- Mengkai Feng
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | |
Collapse
|
9
|
Yeo K, Lushi E, Vlahovska PM. Dynamics of inert spheres in active suspensions of micro-rotors. SOFT MATTER 2016; 12:5645-5652. [PMID: 27265340 DOI: 10.1039/c6sm00360e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Inert particles suspended in active fluids of self-propelled particles are known to often exhibit enhanced diffusion and novel coherent structures. Here we numerically investigate the dynamical behavior and self-organization in a system consisting of passive and actively rotating spheres of the same size. The particles interact through direct collisions and the fluid flows generated as they move. In the absence of passive particles, three states emerge in a binary mixture of spinning spheres depending on particle fraction: a dilute gas-like state where the rotors move chaotically, a phase-separated state where like-rotors move in lanes or vortices, and a jammed state where crystals continuously assemble, melt and move (K. Yeo, E. Lushi, and P. M. Vlahovska, Phys. Rev. Lett., 2015, 114, 188301). Passive particles added to the rotor suspension modify the system dynamics and pattern formation: while states identified in the pure active suspension still emerge, they occur at different densities and mixture proportions. The dynamical behavior of the inert particles is also non-trivially dependent on the system composition.
Collapse
Affiliation(s)
- Kyongmin Yeo
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | | | | |
Collapse
|
10
|
Abstract
Net (as opposed to random) motion of active matter results from an average swim (or propulsive) force. It is shown that the average swim force acts like a body force - an internal body force. As a result, the particle-pressure exerted on a container wall is the sum of the swim pressure [Takatori et al., Phys. Rev. Lett., 2014, 113, 028103] and the 'weight' of the active particles. A continuum description is possible when variations occur on scales larger than the run length of the active particles and gives a Boltzmann-like distribution from a balance of the swim force and the swim pressure. Active particles may also display 'action at a distance' and accumulate adjacent to (or be depleted from) a boundary without any external forces. In the momentum balance for the suspension - the mixture of active particles plus fluid - only external body forces appear.
Collapse
Affiliation(s)
- Wen Yan
- Department of Mechanical & Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|