1
|
Mohammadkhah M, Klinge S. Review paper: The importance of consideration of collagen cross-links in computational models of collagen-based tissues. J Mech Behav Biomed Mater 2023; 148:106203. [PMID: 37879165 DOI: 10.1016/j.jmbbm.2023.106203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Collagen as the main protein in Extra Cellular Matrix (ECM) is the main load-bearing component of fibrous tissues. Nanostructure and architecture of collagen fibrils play an important role in mechanical behavior of these tissues. Extensive experimental and theoretical studies have so far been performed to capture these properties, but none of the current models realistically represent the complexity of network mechanics because still less is known about the collagen's inner structure and its effect on the mechanical properties of tissues. The goal of this review article is to emphasize the significance of cross-links in computational modeling of different collagen-based tissues, and to reveal the need for continuum models to consider cross-links properties to better reflect the mechanical behavior observed in experiments. In addition, this study outlines the limitations of current investigations and provides potential suggestions for the future work.
Collapse
Affiliation(s)
- Melika Mohammadkhah
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Sandra Klinge
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
2
|
Yu J, Zhai C, Wang M, Cai Z, Yeo J, Zhang Q, Zhao C, Lin S. Hybridly double-crosslinked carbon nanotube networks with combined strength and toughness via cooperative energy dissipation. NANOSCALE 2022; 14:2434-2445. [PMID: 35098959 DOI: 10.1039/d1nr06832f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although chemical crosslinking has been extensively explored to enhance the mechanical properties of network-type materials for structural and energy (electrochemical, thermal, etc.) applications, loading-induced energy dissipations usually occur through a single channel that either leads to network brittleness or low strength/stiffness. In this work, we apply coarse-grained molecular dynamics simulations to explore the potential of hybridly double-crosslinked carbon nanotube (CNT) networks as a light weight functional material with combined strength and toughness. While increasing the crosslinking density or strong crosslink composition may, in general, enhance the strength and toughness, further increasing the two parameters would surprisingly lead to deteriorated strength and toughness. We find that double-crosslinked networks can nicely achieve cooperative energy dissipation with minimal structural damage. In particular, the weak crosslinks serve as "sacrificial bonds" to dissipate elastic energies from external loading, while the strong crosslinks act as "structure holders" and break at a much later stage during the tensile test. Therefore, the combination of more than one type of crosslinking with hybrid potential energy landscapes and breaking time scales can prevent premature simultaneous breaking of multiple strong crosslinks. By deploying intermediate amounts of weak and strong crosslinks, we observe an outstanding density-normalized strength of 227-2130 kPa m3 kg-1 as compared to many structural materials and advanced nanocomposites. The crosslinking strategies developed here would pave new avenues for the rational design of functional network materials beyond CNTs, such as hydrogels, nanofibers, and nanocomposites.
Collapse
Affiliation(s)
- Jingui Yu
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chenxi Zhai
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mingchao Wang
- Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhuangli Cai
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Qiaoxin Zhang
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Changying Zhao
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shangchao Lin
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
A High Coordination of Cross-Links Is Beneficial for the Strength of Cross-Linked Fibers. Biomimetics (Basel) 2019; 4:biomimetics4010012. [PMID: 31105198 PMCID: PMC6477605 DOI: 10.3390/biomimetics4010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/23/2023] Open
Abstract
The influence of the coordination of (reversible) cross-links on the mechanical properties of aligned fiber bundles is investigated. Two polymeric systems containing cross-links of different coordination (two- and three-fold coordination) but having the same binding energy are investigated. In particular, the response to loading of these systems is compared. Mechanical parameters (strength, stiffness and work-to-fracture) are obtained by computational loading tests. The influence of coordination is studied for simple test systems with pre-defined topologies that maximize strength as well as for more realistic fiber bundles containing nine chains. The results show that a higher coordination of cross-links has a beneficial effect on the strength and the stiffness of the systems, while the work-to-fracture was found larger for the system having a smaller coordination of cross-links. It can be concluded that controlling the coordination of cross-links is a versatile tool to specifically tailor the mechanical properties of polymeric structures.
Collapse
|
4
|
Reinecke A, Bertinetti L, Fratzl P, Harrington MJ. Cooperative behavior of a sacrificial bond network and elastic framework in providing self-healing capacity in mussel byssal threads. J Struct Biol 2016; 196:329-339. [DOI: 10.1016/j.jsb.2016.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022]
|