1
|
Li C, Yu Y, Li H, Tian J, Guo W, Shen Y, Cui H, Pan Y, Song Y, Shum HC. One-Pot Self-Assembly of Dual-Color Domes Using Mono-Sized Silica Nanoparticles. NANO LETTERS 2022; 22:5236-5243. [PMID: 35731830 DOI: 10.1021/acs.nanolett.2c01090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spots with dual structural colors on the skin of some organisms in nature are of tremendous interest due to the unique function of their dye-free colors. However, imitation of them requires complicated manufacturing processes, expensive equipment, and multiple predesigned building blocks. In this work, a one-pot strategy based on the phase-separation-assisted nonuniform self-assembly of monosized silica nanoparticles is developed to construct domes with dual structural colors. In drying poly(ethylene glycol)-dextran-based (PEG-DEX) droplets, monosized nanoparticles distribute nonuniformly in two compartments due to the droplet inner flow and different nanoparticle compatibility with the two phases. The dome colors are derived from the self-assembled nanoparticles and are programmable by regulating the assembly conditions. The one-pot strategy enables the preparation of multicolor using only one type of building block. With the dual-color domes, encrypted patterns with a high volume of contents are designed, showing promising applications in information delivery.
Collapse
Affiliation(s)
- Chang Li
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yafeng Yu
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Huizeng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingxuan Tian
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yanting Shen
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Huanqing Cui
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yi Pan
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| |
Collapse
|
2
|
Moon BU, Clime L, Hernandez-Castro JA, Brassard D, Nassif C, Malic L, Veres T. On-the-Fly Phase Transition and Density Changes of Aqueous Two-Phase Systems on a Centrifugal Microfluidic Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:79-85. [PMID: 34928624 DOI: 10.1021/acs.langmuir.1c01923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper describes on-the-fly physical property changes of aqueous two-phase systems (ATPS) in microfluidic devices. The properties and phases of the ATPS are modulated on-demand by using a centrifugal microfluidic device filled with poly(ethylene glycol) (PEG) and dextran (DEX) solutions. By use of the centrifugal force and active pneumatic controls provided by a centrifugal microfluidic platform (CMP), PEG-DEX mixtures are manipulated and processed inside simple thermoplastic microfluidic devices. First, we experimentally demonstrate an on-chip ATPS transition from two phases to a single phase and vice versa by dynamically changing the concentration of the solution to bring ATPS across the binodal curve. We also demonstrate a density modulation scheme by introducing an ATPS solution mixed with sodium diatrizoate hydrate, which allows to increase the liquid density. By adding precisely metered volumes of water, we spontaneously change the density of the solution on the CMP and show that density marker microbeads fall into the solution according to their corresponding densities. The measured densities of ATPS show a good agreement with densities of microbeads and analytical plots. The results presented in this paper highlight the tremendous potential of CMPs for performing complex on-chip processing of ATPS. We anticipate that this method will be useful in applications such as microparticle-based plasma protein analysis and blood cell fractionation.
Collapse
Affiliation(s)
- Byeong-Ui Moon
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| | - Liviu Clime
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| | | | - Daniel Brassard
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| | - Christina Nassif
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| | - Lidija Malic
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| | - Teodor Veres
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| |
Collapse
|
3
|
Navi M, Kieda J, Tsai SSH. Magnetic polyelectrolyte microcapsules via water-in-water droplet microfluidics. LAB ON A CHIP 2020; 20:2851-2860. [PMID: 32555881 DOI: 10.1039/d0lc00387e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polyelectrolyte microcapsules (PEMCs) have biocompatible microcompartments. Therefore, PEMCs are useful for applications in cosmetics, food, pharmaceutics, and other industries. The fabrication of PEMCs often involves the use of harsh chemicals or cytotoxic organic phases that make biomedical applications of the microcapsules challenging. In this report, we present an all-aqueous droplet microfluidics platform for the generation of magnetic PEMCs. In the platform, we use an aqueous-two-phase system (ATPS) of polyethylene glycol (PEG) and dextran (Dex), to generate water-in-water droplets, which are magnetically functionalized with ferrofluid. Strong polyelectrolytes (PEs) with opposite charges are used in each ATPS phase. We make emulsion templates of magnetic Dex, containing the polycations, in a continuous phase of PEG. We then apply a magnetic field to move the magnetic droplets to a second PEG phase, which contains the polyanions. By careful tuning of the fluxes of the two PEs in their respective phases, we trigger the formation of a shell at the droplet interface. Owing to the presence of the ferrofluid, the resulting microcapsules are magnetically responsive. We show that the magnetic PEMCs are capable of passive release of large pseudo-drugs as well as triggered release using external stimuli such as osmotic shock and pH change. We expect that magnetic PEMCs from this biocompatible all-aqueous platform will find utility in the fabrication of functionalized drug carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Maryam Navi
- Graduate Program in Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Canada.
| | | | | |
Collapse
|
4
|
Chao Y, Shum HC. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem Soc Rev 2020; 49:114-142. [DOI: 10.1039/c9cs00466a] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes recent advances of aqueous two-phase systems (ATPSs), particularly their interfaces, with a focus on biomedical applications.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| | - Ho Cheung Shum
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| |
Collapse
|
5
|
Ghosh SK, Böker A. Self‐Assembly of Nanoparticles in 2D and 3D: Recent Advances and Future Trends. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Alexander Böker
- Fraunhofer‐Institut für Angewandte Polymerforschung Geiselbergstraβe 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
6
|
Guzowski J, Gim B. Particle clusters at fluid-fluid interfaces: equilibrium profiles, structural mechanics and stability against detachment. SOFT MATTER 2019; 15:4921-4938. [PMID: 31169851 DOI: 10.1039/c9sm00425d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigate clustering of particles at an initially flat fluid-fluid interface of surface tension γ under an external force f directed perpendicular to the interface. We employ analytical theory, numerical energy minimization (Surface Evolver) and computational fluid dynamics (the Lattice-Boltzmann method) to study the equilibrium deformation of the interface and structural mechanics of the clusters, in particular at the onset of instability. In the case of incompressible clusters, we find that the equilibrium 3D interface profiles are uniquely determined by the length scale γ/(fn0), where n0 is the particle surface number density, and a non-dimensional shape parameter f2Nn0/γ2. The scaling remains valid in the whole regime of forces f, i.e., even close to the stability limit fcrit. In the cases with an initial hexagonal arrangement of the particles, upon f approaching fcrit, our simulations additionally reveal the emergence of curvature-induced defects and 2D stress anisotropy. We develop stability diagrams in terms of f, N (we study 7 ≤ N ≤ 61), and the contact angle θp at the particles and identify three unstable regimes corresponding to (i) collective detachment of the whole cluster from the interface, (ii) ejection of individual particles, and (iii) both detachment and ejection. We also discuss possible metastable states. Altogether, our results may help in better understanding and controlling the particle interfacial instabilities with potential uses in synthesis of new materials, environmental sciences and microfluidics.
Collapse
Affiliation(s)
- Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | | |
Collapse
|
7
|
Xue D, Meng QB, Song XM. Magnetic-Responsive Janus Nanosheets with Catalytic Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10967-10974. [PMID: 30793582 DOI: 10.1021/acsami.8b21012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this article, we describe a method to fabricate magnetic-responsive Janus nanosheets with catalytic properties via the surface protection method. Fe3O4 nanoparticles and PW12O403--based ionic liquid are located on the two opposite sides of the Janus nanosheets, respectively. The Janus nanosheets are characterized by Fourier transform infrared, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and ζ-potential analyses. They are used as recyclable catalysts to the esterification reaction of methanol and oleic acid for their magnetic-responsive and catalytic properties. The esterification ratio is up to 80% and there is nearly no change when Fe3O4 nanoparticles/PW12O403--based ionic liquid composite nanosheets were recycled four times.
Collapse
Affiliation(s)
- Dan Xue
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry , Liaoning University , Shenyang 110036 , China
| | - Qing Bo Meng
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry , Liaoning University , Shenyang 110036 , China
| | - Xi-Ming Song
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry , Liaoning University , Shenyang 110036 , China
| |
Collapse
|
8
|
Deißenbeck F, Löwen H, Oğuz EC. Ground state of dipolar hard spheres confined in channels. Phys Rev E 2018; 97:052608. [PMID: 29906819 DOI: 10.1103/physreve.97.052608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 01/16/2023]
Abstract
We investigate the ground state of a classical two-dimensional system of hard-sphere dipoles confined between two hard walls. Using lattice sum minimization techniques we reveal that at fixed wall separations, a first-order transition from a vacuum to a straight one-dimensional chain of dipoles occurs upon increasing the density. Further increase in the density yields the stability of an undulated chain as well as nontrivial buckling structures. We explore the close-packed configurations of dipoles in detail, and we find that, in general, the densest packings of dipoles possess complex magnetizations along the principal axis of the slit. Our predictions serve as a guideline for experiments with granular dipolar and magnetic colloidal suspensions confined in slitlike channel geometry.
Collapse
Affiliation(s)
- Florian Deißenbeck
- Institut für Theoretische Physik II, Weiche Materie: Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Weiche Materie: Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Erdal C Oğuz
- School of Mechanical Engineering and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Abbasi N, Navi M, Tsai SSH. Microfluidic Generation of Particle-Stabilized Water-in-Water Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:213-218. [PMID: 29231744 DOI: 10.1021/acs.langmuir.7b03245] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we present a microfluidic platform that generates particle-stabilized water-in-water emulsions. The water-in-water system that we use is based on an aqueous two-phase system of polyethylene glycol (PEG) and dextran (DEX). DEX droplets are formed passively, in the continuous phase of PEG and carboxylated particle suspension at a flow-focusing junction inside a microfluidic device. As DEX droplets travel downstream inside the microchannel, carboxylated particles that are in the continuous phase partition to the interface of the DEX droplets due to their affinity to the interface of PEG and DEX. As the DEX droplets become covered with carboxylated particles, they become stabilized against coalescence. We study the coverage and stability of the emulsions, while tuning the concentration and the size of the carboxylated particles, downstream inside the reservoir of the microfluidic device. These particle-stabilized water-in-water emulsions showcase good particle adsorption under shear, while being flowed through narrow microchannels. The intrinsic biocompatibility advantages of particle-stabilized water-in-water emulsions make them a good alternative to traditional particle-stabilized water-in-oil emulsions. To illustrate a biotechnological application of this platform, we show a proof-of-principle of cell encapsulation using this system, which with further development may be used for immunoisolation of cells for transplantation purposes.
Collapse
Affiliation(s)
- Niki Abbasi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , Toronto M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-A Partnership between Ryerson University and St. Michael's Hospital , Toronto M5B 1W8, Canada
| | - Maryam Navi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , Toronto M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-A Partnership between Ryerson University and St. Michael's Hospital , Toronto M5B 1W8, Canada
| | - Scott S H Tsai
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , Toronto M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-A Partnership between Ryerson University and St. Michael's Hospital , Toronto M5B 1W8, Canada
| |
Collapse
|
10
|
Alorabi AQ, Tarn MD, Gómez-Pastora J, Bringas E, Ortiz I, Paunov VN, Pamme N. On-chip polyelectrolyte coating onto magnetic droplets - towards continuous flow assembly of drug delivery capsules. LAB ON A CHIP 2017; 17:3785-3795. [PMID: 28991297 DOI: 10.1039/c7lc00918f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyelectrolyte (PE) microcapsules for drug delivery are typically fabricated via layer-by-layer (LbL) deposition of PE layers of alternating charge on sacrificial template microparticles, which usually requires multiple incubation and washing steps that render the process repetitive and time-consuming. Here, ferrofluid droplets were explored for this purpose as an elegant alternative of templates that can be easily manipulated via an external magnetic field, and require only a simple microfluidic chip design and setup. Glass microfluidic devices featuring T-junctions or flow focusing junctions for the generation of oil-based ferrofluid droplets in an aqueous continuous phase were investigated. Droplet size was controlled by the microfluidic channel dimensions as well as the flow rates of the ferrofluid and aqueous phases. The generated droplets were stabilised by a surface active polymer, polyvinylpyrrolidone (PVP), and then guided into a chamber featuring alternating, co-laminar PE solutions and wash streams, and deflected across them by means of an external permanent magnet. The extent of droplet deflection was tailored by the flow rates, the concentration of magnetic nanoparticles in the droplets, and the magnetic field strength. PVP-coated ferrofluid droplets were deflected through solutions of polyelectrolyte and washing streams using several iterations of multilaminar flow designs. This culminated in an innovative "Snakes-and-Ladders" inspired microfluidic chip design that overcame various issues of the previous iterations for the deposition of layers of anionic poly(sodium-4-styrene sulfonate) (PSS) and cationic poly(fluorescein isothiocyanate allylamine hydrochloride) (PAH-FITC) onto the droplets. The presented method demonstrates a simple and rapid process for PE layer deposition in <30 seconds, and opens the way towards rapid layer-by-layer assembly of PE microcapsules for drug delivery applications.
Collapse
Affiliation(s)
- Ali Q Alorabi
- School of Mathematics and Physical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
Lee SJ, Kang JY, Choi W, Kwak R. Nanopore Sensing in Aqueous Two-Phase System: Simultaneous Enhancement of Signal and Translocation Time via Conformal Coating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601725. [PMID: 27753235 DOI: 10.1002/smll.201601725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Nanofluidic resistive pulse sensing (RPS) has been extensively used to measure the size, concentration, and surface charge of nanoparticles in electrically conducting solutions. Although various methods have been explored for improving detection performances, intrinsic problems including the extremely low particle-to-pore volume ratio (<0.01%) and fast nanoparticle translocation (10-1000 µs) still induce difficulties in detection, such as low signal magnitudes and short translocation times. Herein, we present an aqueous two-phase system (ATPS) in a nanofluidic RPS for amplifying translocation signals and decreasing translocation speeds simultaneously. Two immiscible aqueous liquids build a liquid-liquid interface inside nanopores. As particles translocate from a high-affinity liquid phase into a lower-affinity one, the high-affinity liquid forms a conformal coating on the particles, which increases the effective particle size and amplifies the current-blockage signal. The translocation time is also increased, as the ATPS interface impedes the particle translocation. For 20 nm particles, 7.92-fold and 5.82-fold enhancements of signal magnitude and translocation time can be achieved. To our knowledge, this is the first attempt to improve nanofluidic RPS by treating an interface of solution reservoirs for manipulating target particles rather than nanopores. This direct particle manipulation allows us to solve the two intrinsic problems all at once.
Collapse
Affiliation(s)
- Sang Jun Lee
- School of Mechanical Engineering, Korea University, Seoul, 136-701, Republic of Korea
- Center for BioMicrosystems, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea
| | - Ji Yoon Kang
- Center for BioMicrosystems, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea
| | - Wonjoon Choi
- School of Mechanical Engineering, Korea University, Seoul, 136-701, Republic of Korea
| | - Rhokyun Kwak
- Center for BioMicrosystems, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea
| |
Collapse
|
12
|
Lee DG, Cicuta P, Vella D. Self-assembly of repulsive interfacial particles via collective sinking. SOFT MATTER 2016; 13:212-221. [PMID: 27357475 DOI: 10.1039/c6sm00901h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Charged colloidal particles trapped at an air-water interface are well known to form an ordered crystal, stabilized by a long ranged repulsion; the details of this repulsion remain something of a mystery, but all experiments performed to date have confirmed a dipolar-repulsion, at least at dilute concentrations. More complex arrangements are often observed, especially at higher concentration, and these seem to be incompatible with a purely repulsive potential. In addition to electrostatic repulsion, interfacial particles may also interact via deformation of the surface: so-called capillary effects. Pair-wise capillary interactions are well understood, and are known to be too small (for these colloidal particles) to overcome thermal effects. Here we show that collective effects may significantly modify the simple pair-wise interactions and become important at higher density, though we remain well below close packing throughout. In particular, we show that the interaction of many interfacial particles can cause much larger interfacial deformations than do isolated particles, and show that the energy of interaction per particle due to this "collective sinking" grows as the number of interacting particles grows. Though some of the parameters in our simple model are unknown, the scaling behaviour is entirely consistent with experimental data, strongly indicating that estimating interaction energy based solely on pair-wise potentials may be too simplistic for surface particle layers.
Collapse
Affiliation(s)
- Duck-Gyu Lee
- Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.
| | | | - Dominic Vella
- Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.
| |
Collapse
|