1
|
Sahadat Hossain M, Akter Jahan S, Ahmed S. Crystallographic characterization of bio-waste material originated CaCO3, green-synthesized CaO and Ca(OH)2. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
2
|
Lian Q, Zheng S, Shi Z, Li K, Chen R, Wang P, Liu H, Chen Y, Zhong Q, Liu Q, Pan X, Gao J, Gao C, Liu W, Wu X, Zhang Y, Zhang Y, Wang J, Cheng H. Using a degradable three-layer sandwich-type coating to prevent titanium implant infection with the combined efficient bactericidal ability and fast immune remodeling property. Acta Biomater 2022; 154:650-666. [PMID: 36306986 DOI: 10.1016/j.actbio.2022.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/18/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023]
Abstract
Titanium (Ti) implant-associated infections are a challenge in orthopedic surgery, for which a series of antibacterial coatings have been designed and fabricated to reduce the risk of bacterial contamination. Herein, we created a degradable three-layer sandwich-type coating to achieve long-term antibacterial effects while simultaneously reconstructing the local immune microenvironment. The vancomycin (Van)-loaded vaterite coating constitutes the outer and inner layers, whereas Interleukin-12 (IL-12)-containing liposomes embedded in sodium alginate constitutes the middle layer. Van, released from the vaterite, demonstrated a favorable and rapid bactericidal ability against the representative methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains. The released IL-12 exhibited the desired immune reconstitution abilities, actively facilitating defenses against subsequent bacterial invasions. Furthermore, the biocompatibility and cell-binding feature of the multifunctional coating was beneficial for achieving solid interface intergradation. Overall, the benefits of the three-layer sandwich-type coating, including the convenient fabrication process, efficient antimicrobial activity, fast immune remodeling property, fine cell-binding feature, and biodegradability, highlight its promising translational potential in preventing implant infection. STATEMENT OF SIGNIFICANCE: To prevent titanium implant infections, researchers have designed various antibacterial coatings. However, most of these coatings focused only on killing the invading bacteria over a limited postoperative period. However, the local immune microenvironment is compromised during surgery. Local immune deflection impedes the ability of the local immune defenses to clear bacteria and limits immune memory building from active defense against long-term subsequent bacterial invasions. Furthermore, these coatings are usually nondegradable and differ substantially from bone components, thereby impairing the integration of the coating and bone interface and generating concerns about implant stability and bacterial contamination. In this work, we synthesized a degradable coating that provides sustained antibacterial activity, promotes immune reconstitution, and simultaneously achieves solid bone integration.
Collapse
Affiliation(s)
- Qiang Lian
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shaowei Zheng
- Department of Orthopedic, Huizhou First Hospital, Guangdong Medical University, Huizhou 516003, China; Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhe Shi
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kangxian Li
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rong Chen
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Pinkai Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haibing Liu
- Department of Orthopedic, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang 421001, China
| | - Yuhang Chen
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Zhong
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qi Liu
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Xin Pan
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jian Gao
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chenghao Gao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 43000, China
| | - Weilu Liu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xuanpin Wu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yayun Zhang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 43000, China
| | - Yang Zhang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jian Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hao Cheng
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Hao L, Wang A, Fu J, Sen Liang, Han Q, Jing Y, Li J, Li Q, Bai S, Seeberger PH, Yin J. Biomineralized Dipeptide Self-Assembled Hydrogel with Ultrahigh Mechanical Strength and Osteoinductivity for Bone Regeneration. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Ruiz Arana L, Ströh J, Amtsfeld J, Doungmo G, Novikov D, Khadiev A, Etter M, Wharmby M, Suta M, Terraschke H. Crystallisation of phosphates revisited: a multi-step formation process for SrHPO 4. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2021-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
SrHPO4 is used in a multitude of applications, including biomedicine, catalysts, luminescent materials, and batteries. However, the performance of these materials depends on the ability to control the formation and transformation of strontium phosphates. This work focuses on the application of in situ and ex situ measurements, including synchrotron-based X-ray diffraction (XRD) analysis, luminescence of Ce3+ and Eu3+ dopants, light transmission, reflectance, and thermogravimetry to track structural changes in SrHPO4 under different experimental conditions. Ex situ analysis of aliquots revealed favourable crystallisation of β-SrHPO4 through the formation of Sr6H3(PO4)5·2H2O as an intermediate. Furthermore, in situ analysis showed that the reaction mechanism evolves via the initial formation of amorphous strontium phosphate and Sr5(PO4)3OH, which subsequently transforms to γ-SrHPO4. Analysis of the luminescence properties of the lanthanide dopants provided insights into the coordination environments of the substituted Sr2+ sites.
Collapse
Affiliation(s)
- Laura Ruiz Arana
- Institut für Anorgansiche Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
| | - Jonas Ströh
- Institut für Anorgansiche Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
| | - Jasper Amtsfeld
- Institut für Anorgansiche Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
| | - Giscard Doungmo
- Institut für Anorgansiche Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
| | - Dmitri Novikov
- Deutsches Elektronen-Synchrotron (DESY), FS-PETRA-D , Notkestraße 85, 22607 Hamburg , Germany
| | - Azat Khadiev
- Deutsches Elektronen-Synchrotron (DESY), FS-PETRA-D , Notkestraße 85, 22607 Hamburg , Germany
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), FS-PETRA-D , Notkestraße 85, 22607 Hamburg , Germany
| | - Michael Wharmby
- Deutsches Elektronen-Synchrotron (DESY), FS-PETRA-D , Notkestraße 85, 22607 Hamburg , Germany
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry, Heinrich Heine University Düsseldorf , Universitätsstraße 1, 40225 , Düsseldorf , Germany
| | - Huayna Terraschke
- Institut für Anorgansiche Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
- Kiel Nano, Surface and Interface Science (KINSIS), Christian-Albrechts-Universität zu Kiel , Christian-Albrechts-Platz 4 , 24118 Kiel , Germany
| |
Collapse
|
5
|
Unger RE, Stojanovic S, Besch L, Alkildani S, Schröder R, Jung O, Bogram C, Görke O, Najman S, Tremel W, Barbeck M. In Vivo Biocompatibility Investigation of an Injectable Calcium Carbonate (Vaterite) as a Bone Substitute including Compositional Analysis via SEM-EDX Technology. Int J Mol Sci 2022; 23:1196. [PMID: 35163120 PMCID: PMC8835873 DOI: 10.3390/ijms23031196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022] Open
Abstract
Injectable bone substitutes (IBS) are increasingly being used in the fields of orthopedics and maxillofacial/oral surgery. The rheological properties of IBS allow for proper and less invasive filling of bony defects. Vaterite is the most unstable crystalline polymorph of calcium carbonate and is known to be able to transform into hydroxyapatite upon contact with an organic fluid (e.g., interstitial body fluid). Two different concentrations of hydrogels based on poly(ethylene glycol)-acetal-dimethacrylat (PEG-a-DMA), i.e., 8% (w/v) (VH-A) or 10% (w/v) (VH-B), were combined with vaterite nanoparticles and implanted in subcutaneous pockets of BALB/c mice for 15 and 30 days. Explants were prepared for histochemical staining and immunohistochemical detection methods to determine macrophage polarization, and energy-dispersive X-ray analysis (EDX) to analyze elemental composition was used for the analysis. The histopathological analysis revealed a comparable moderate tissue reaction to the hydrogels mainly involving macrophages. Moreover, the hydrogels underwent a slow cellular infiltration, revealing a different degradation behavior compared to other IBS. The immunohistochemical detection showed that M1 macrophages were mainly found at the material surfaces being involved in the cell-mediated degradation and tissue integration, while M2 macrophages were predominantly found within the reactive connective tissue. Furthermore, the histomorphometrical analysis revealed balanced numbers of pro- and anti-inflammatory macrophages, demonstrating that both hydrogels are favorable materials for bone tissue regeneration. Finally, the EDX analysis showed a stepwise transformation of the vaterite particle into hydroxyapatite. Overall, the results of the present study demonstrate that hydrogels including nano-vaterite particles are biocompatible and suitable for bone tissue regeneration applications.
Collapse
Affiliation(s)
- Ronald E. Unger
- Repair-Lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Sanja Stojanovic
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; (S.S.); (S.N.)
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18108 Niš, Serbia
| | - Laura Besch
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (L.B.); (R.S.); (W.T.)
| | - Said Alkildani
- BerlinAnalytix GmbH, Ullsteinstrasse 108, 12109 Berlin, Germany; (S.A.); (C.B.)
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Romina Schröder
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (L.B.); (R.S.); (W.T.)
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Caroline Bogram
- BerlinAnalytix GmbH, Ullsteinstrasse 108, 12109 Berlin, Germany; (S.A.); (C.B.)
| | - Oliver Görke
- Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technical University Berlin, Hardenbergstr. 40, 10623 Berlin, Germany;
| | - Stevo Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; (S.S.); (S.N.)
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18108 Niš, Serbia
| | - Wolfgang Tremel
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (L.B.); (R.S.); (W.T.)
| | - Mike Barbeck
- Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technical University Berlin, Hardenbergstr. 40, 10623 Berlin, Germany;
| |
Collapse
|
6
|
Maslyk M, Mondeshki M, Tremel W. Amorphous calcium carbonate monohydrate containing a defect hydrate network by mechanochemical processing of mono-hydrocalcite using ethanol as auxiliary solvent. CrystEngComm 2022. [DOI: 10.1039/d2ce00677d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium carbonate monohydrate-like ACC was made by ball-milling with ethanol as auxiliary solvent. IR and solid-state NMR, diffraction and total scattering show that defects of the hydrate network due to partial displacement of water by ethanol are crucial for amorphization.
Collapse
Affiliation(s)
- Marcel Maslyk
- Department Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Mihail Mondeshki
- Department Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Wolfgang Tremel
- Department Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
| |
Collapse
|
7
|
Polat S, Sayan P. Ultrasonic-assisted eggshell extract-mediated polymorphic transformation of calcium carbonate. ULTRASONICS SONOCHEMISTRY 2020; 66:105093. [PMID: 32244088 DOI: 10.1016/j.ultsonch.2020.105093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to evaluate the combined effects of eggshell extract and ultrasonic irradiation on the polymorphic transformation of calcium carbonate (CaCO3). In this context, XRD, Raman spectroscopy, SEM, AFM, TGA-FTIR, BET, and zeta potential analysis were used to identify and characterize the different polymorphs of CaCO3 obtained in the absence and presence of eggshell extract in the media with and without ultrasonic irradiation. The morphology and polymorphic nature of the CaCO3 crystals were observed to change, which indicated that the eggshell extract and ultrasonication influenced the structure and crystallization of CaCO3. The structural analysis results indicated that the addition of eggshell extract to the media resulted in the full transformation of calcite to the vaterite polymorph. The results also showed that ultrasonic irradiation had a more significant influence on the BET specific surface area of the crystals compared to the eggshell extract media. Furthermore, a Box-Behnken design with response surface methodology was employed to determine the optimal operating conditions for CaCO3 crystallization. The effects of stirring rate, extract concentration, and ultrasonic power on the BET surface area were investigated. The results show that the data sufficiently fit the second-order polynomial model. Understanding the eggshell extract-mediated polymorphic transformation with ultrasonic irradiation obtained in this study makes it possible to control the polymorphic formation and modify the product characteristics.
Collapse
Affiliation(s)
- Sevgi Polat
- Department of Chemical Engineering, Faculty of Engineering, Marmara University, 34722 İstanbul, Turkey.
| | - Perviz Sayan
- Department of Chemical Engineering, Faculty of Engineering, Marmara University, 34722 İstanbul, Turkey
| |
Collapse
|
8
|
Stengelin E, Kuzmina A, Beltramo GL, Koziol MF, Besch L, Schröder R, Unger RE, Tremel W, Seiffert S. Bone Scaffolds Based on Degradable Vaterite/PEG-Composite Microgels. Adv Healthc Mater 2020; 9:e1901820. [PMID: 32378355 DOI: 10.1002/adhm.201901820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/08/2020] [Indexed: 12/20/2022]
Abstract
Vaterite, a metastable modification of calcium carbonate, embedded in a flexible microgel packaging with adjustable mechanical properties, functionality, and biocompatibility, provides a powerful scaffolding for bone tissue regeneration, as it is easily convertible to bone-like hydroxyapatite (HA). In this study, the synthesis and physical analysis of a packaging material to encapsulate vaterite particles and osteoblast cells into monodisperse, sub-millimeter-sized microgels, is described whereby a systematic approach is used to tailor the microgel properties. The size and shape of the microgels is controlled via droplet-based microfluidics. Key requirements for the polymer system, such as absence of cytotoxicity as well as biocompatibility and biodegradability, are accomplished with functionalized poly(ethylene glycol) (PEG), which reacts in a cytocompatible thiol-ene Michael addition. On a mesoscopic level, the microgel stiffness and gelation times are adjusted to obtain high cellular viabilities. The co-encapsulation of living cells provides i) an in vitro platform for the study of cellular metabolic processes which can be applied to bone formation and ii) an in vitro foundation for novel tissue-regenerative therapies. Finally, the degradability of the microgels at physiological conditions caused by hydrolysis-sensitive ester groups in the polymer network is examined.
Collapse
Affiliation(s)
- Elena Stengelin
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| | - Alena Kuzmina
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| | - Guillermo L. Beltramo
- Institute of Biological Information Processing 2 (IBI‐2)Jülich Forschungszentrum GmbH Jülich D‐52428 Germany
| | - Martha F. Koziol
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| | - Laura Besch
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| | - Romina Schröder
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| | - Ronald E. Unger
- Johannes Gutenberg University MainzInstitute of Pathology Mainz D‐55128 Germany
| | - Wolfgang Tremel
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| | - Sebastian Seiffert
- Johannes Gutenberg University MainzDepartment of Chemistry Mainz D‐55128 Germany
| |
Collapse
|
9
|
Chindamo G, Sapino S, Peira E, Chirio D, Gonzalez MC, Gallarate M. Bone Diseases: Current Approach and Future Perspectives in Drug Delivery Systems for Bone Targeted Therapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E875. [PMID: 32370009 PMCID: PMC7279399 DOI: 10.3390/nano10050875] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022]
Abstract
Bone diseases include a wide group of skeletal-related disorders that cause mobility limitations and mortality. In some cases, e.g., in osteosarcoma (OS) and metastatic bone cancer, current treatments are not fully effective, mainly due to low patient compliance and to adverse side effects. To overcome these drawbacks, nanotechnology is currently under study as a potential strategy allowing specific drug release kinetics and enhancing bone regeneration. Polymers, ceramics, semiconductors, metals, and self-assembled molecular complexes are some of the most used nanoscale materials, although in most cases their surface properties need to be tuned by chemical or physical reactions. Among all, scaffolds, nanoparticles (NPs), cements, and hydrogels exhibit more advantages than drawbacks when compared to other nanosystems and are therefore the object of several studies. The aim of this review is to provide information about the current therapies of different bone diseases focusing the attention on new discoveries in the field of targeted delivery systems. The authors hope that this paper could help to pursue further directions about bone targeted nanosystems and their application for bone diseases and bone regeneration.
Collapse
Affiliation(s)
- Giulia Chindamo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Simona Sapino
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Elena Peira
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Daniela Chirio
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Mónica Cristina Gonzalez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina;
| | - Marina Gallarate
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| |
Collapse
|
10
|
Modularly engineered alginate bioconjugate hydrogel as biocompatible injectable scaffold for in situ biomineralization. Carbohydr Polym 2020; 233:115832. [PMID: 32059885 DOI: 10.1016/j.carbpol.2020.115832] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
|
11
|
Vikulina A, Voronin D, Fakhrullin R, Vinokurov V, Volodkin D. Naturally derived nano- and micro-drug delivery vehicles: halloysite, vaterite and nanocellulose. NEW J CHEM 2020. [DOI: 10.1039/c9nj06470b] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We discuss prospects for halloysite nanotubes, vaterite crystals and nanocellulose to enter the market of biomaterials for drug delivery and tissue engineering, and their potential for economically viable production from abundant natural sources.
Collapse
Affiliation(s)
- Anna Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology
- Branch Bioanalytics and Bioprocesses
- 14476 Potsdam-Golm
- Germany
| | - Denis Voronin
- Gubkin Russian State University of Oil and Gas
- Department of Physical Chemistry
- Moscow, 119991
- Russian Federation
- Saratov State University
| | - Rawil Fakhrullin
- Gubkin Russian State University of Oil and Gas
- Department of Physical Chemistry
- Moscow, 119991
- Russian Federation
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kreml uramı 18
| | - Vladimir Vinokurov
- Gubkin Russian State University of Oil and Gas
- Department of Physical Chemistry
- Moscow, 119991
- Russian Federation
| | - Dmitry Volodkin
- Gubkin Russian State University of Oil and Gas
- Department of Physical Chemistry
- Moscow, 119991
- Russian Federation
- School of Science and Technology
| |
Collapse
|
12
|
Schröder R, Besch L, Pohlit H, Panthöfer M, Roth W, Frey H, Tremel W, Unger RE. Particles of vaterite, a metastable CaCO3polymorph, exhibit high biocompatibility for human osteoblasts and endothelial cells and may serve as a biomaterial for rapid bone regeneration. J Tissue Eng Regen Med 2018; 12:1754-1768. [DOI: 10.1002/term.2703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 02/08/2018] [Accepted: 05/03/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Romina Schröder
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg-University of Mainz; Mainz Germany
- Institute of Pathology; Johannes Gutenberg-University of Mainz; Mainz Germany
| | - Laura Besch
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg-University of Mainz; Mainz Germany
| | - Hannah Pohlit
- Graduate School Materials Science in Mainz; Mainz Germany
- Institute of Organic Chemistry; Johannes Gutenberg-University of Mainz; Mainz Germany
| | - Martin Panthöfer
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg-University of Mainz; Mainz Germany
| | - Wilfried Roth
- Institute of Pathology; Johannes Gutenberg-University of Mainz; Mainz Germany
| | - Holger Frey
- Institute of Organic Chemistry; Johannes Gutenberg-University of Mainz; Mainz Germany
| | - Wolfgang Tremel
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg-University of Mainz; Mainz Germany
| | - Ronald E. Unger
- Institute of Pathology; Johannes Gutenberg-University of Mainz; Mainz Germany
| |
Collapse
|
13
|
Kepola EJ, Patrickios CS. Networks Based on “Core-First” Star Polymers End-Linked Using a Degradable Ketal Cross-Linker: Synthesis, Characterization, and Cleavage. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eleni J. Kepola
- Department of Chemistry; University of Cyprus; P. O. Box 20537, 1 University Avenue Aglanjia 2109 Nicosia Cyprus
| | - Costas S. Patrickios
- Department of Chemistry; University of Cyprus; P. O. Box 20537, 1 University Avenue Aglanjia 2109 Nicosia Cyprus
| |
Collapse
|
14
|
Hybrid magnetic scaffolds: The role of scaffolds charge on the cell proliferation and Ca 2+ ions permeation. Colloids Surf B Biointerfaces 2017; 156:388-396. [PMID: 28551573 DOI: 10.1016/j.colsurfb.2017.05.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 11/24/2022]
Abstract
Magnetic scaffolds with different charge densities were prepared using magnetic nanoparticles (MNP) and xanthan gum (XG), a negatively charged polysaccharide, or hydroxypropyl methylcellulose (HPMC), an uncharged cellulose ether. XG chains were crosslinked with citric acid (cit), a triprotic acid, whereas HPMC chains were crosslinked either with cit or with oxalic acid (oxa), a diprotic acid. The scaffolds XG-cit, HPMC-cit and HPMC-oxa were characterized by scanning electron microscopy (SEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES), superconducting quantum interference device (SQUID) magnetometry, contact angle and zeta-potential measurements. In addition, the flux of Ca2+ ions through the scaffolds was monitored by using a potentiometric microsensor. The adhesion and proliferation of murine fibroblasts (NIH/3T3) on XG-cit, XG-cit-MNP, HPMC-cit, HPMC-cit-MNP, HPMC-oxa and HPMC-oxa-MNP were evaluated by MTT assay. The magnetic scaffolds presented low coercivity (<25Oe). The surface energy values determined for all scaffolds were similar, ranging from 43mJm-2 to 46mJm-2. However, the polar component decreased after MNP incorporation and the dispersive component of surface energy increased in average 1mJm-2 after MNP incorporation. The permeation of Ca2+ ions through XG-cit-MNP was significantly higher in comparison with that on XG-cit and HPMC-cit scaffolds, but through HPMC-cit-MNP, HPMC-oxa and HPMC-oxa-MNP scaffolds it was negligible within the timescale of the experiment. The adhesion and proliferation of fibroblasts on the scaffolds followed the trend: XG-cit-MNP>XG-cit>HPMC-cit, HPMC-cit-MNP, HPMC-oxa, HPMC-oxa-MNP. A model was proposed to explain the cell behavior stimulated by the scaffold charge, MNP and Ca2+ ions permeation.
Collapse
|
15
|
Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, Tang R. Biomineralization: From Material Tactics to Biological Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605903. [PMID: 28229486 DOI: 10.1002/adma.201605903] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/31/2017] [Indexed: 05/23/2023]
Abstract
Biomineralization is an important tactic by which biological organisms produce hierarchically structured minerals with marvellous functions. Biomineralization studies typically focus on the mediation function of organic matrices on inorganic minerals, which helps scientists to design and synthesize bioinspired functional materials. However, the presence of inorganic minerals may also alter the native behaviours of organic matrices and even biological organisms. This progress report discusses the latest achievements relating to biomineralization mechanisms, the manufacturing of biomimetic materials and relevant applications in biological and biomedical fields. In particular, biomineralized vaccines and algae with improved thermostability and photosynthesis, respectively, demonstrate that biomineralization is a strategy for organism evolution via the rational design of organism-material complexes. The successful modification of biological systems using materials is based on the regulatory effect of inorganic materials on organic organisms, which is another aspect of biomineralization control. Unlike previous studies, this study integrates materials and biological science to achieve a more comprehensive view of the mechanisms and applications of biomineralization.
Collapse
Affiliation(s)
- Shasha Yao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Biao Jin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Changyu Shao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruibo Zhao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
16
|
Pohlit H, Leibig D, Frey H. Poly(Ethylene Glycol) Dimethacrylates with Cleavable Ketal Sites: Precursors for Cleavable PEG-Hydrogels. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/08/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Hannah Pohlit
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Department of Dermatology; University Medical Center Mainz; Langenbeckstr. 1 55131 Mainz Germany
- Graduate School Materials Science in Mainz; Staudinger Weg 9 55128 Mainz Germany
| | - Daniel Leibig
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudinger Weg 9 55128 Mainz Germany
| | - Holger Frey
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
17
|
Tolba E, Müller WEG, Abd El-Hady BM, Neufurth M, Wurm F, Wang S, Schröder HC, Wang X. High biocompatibility and improved osteogenic potential of amorphous calcium carbonate/vaterite. J Mater Chem B 2016; 4:376-386. [PMID: 32263204 DOI: 10.1039/c5tb02228b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In human bone, amorphous calcium carbonate (ACC) is formed as a precursor of the crystalline carbonated apatite/hydroxyapatite (HA). Here we describe that the metastable ACC phase can be stabilized by inorganic polyphosphate (polyP) that is also used as a phosphate source for the non-enzymatic carbonate/phosphate exchange during HA formation. This polymer was found to suppress the transformation of ACC into crystalline CaCO3 at a percentage of 5% [w/w] ("CCP5") with respect to CaCO3 and almost completely at 10% [w/w] ("CCP10"). Both preparations (CaCO3/polyP) are amorphous, but also contain small amounts of vaterite, as revealed by XRD, FTIR and SEM analyses. They did not affect the growth/viability of SaOS-2 cells. Cell culture and Ca2+ release experiments revealed that the CaCO3 particles formed in the presence of polyP (CaCO3/polyP) are degradable and, unlike calcite, become disintegrated with time during the cell culture incubation. Again in contrast to calcite, "CCP5" and "CCP10" were found to exhibit osteogenic activity and induce the expression of alkaline phosphatase gene in SaOS-2 cells as well as in human mesenchymal stem cells (MSC). In vivo studies in rats, using PLGA microspheres inserted in the muscles of the back of the animals, revealed that the encapsulated "CCP10" is not only biocompatible but also supports the regeneration at the implant region. We conclude that ACC containing small amounts of vaterite has osteogenic potential and offers superior properties compared to the biologically inert calcite with respect to a potential application as a scaffold material for bone implants.
Collapse
Affiliation(s)
- Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem Rev 2015; 116:2170-243. [PMID: 26713458 DOI: 10.1021/acs.chemrev.5b00441] [Citation(s) in RCA: 478] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex branched, hyperbranched, and dendrimer like polyethers. Amphiphilic block copolymers based on PEO and PPO (Poloxamers and Pluronics) and advances in the area of PEGylation as the most important bioconjugation strategy are also summarized. With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone.
Collapse
Affiliation(s)
- Jana Herzberger
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| | - Kerstin Niederer
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Hannah Pohlit
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Department of Dermatology, University Medical Center , Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Jan Seiwert
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Matthias Worm
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| |
Collapse
|