1
|
Mohsen L, Chen X, Viraj G, Leyan H, Clowers B, Larriba-Andaluz C. Stepwise Optimization of Traveling Wave Profiles and Inverse Gating Pattern in Structure for Lossless Ion Manipulation Platform. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2025; 510:117420. [PMID: 40123579 PMCID: PMC11927961 DOI: 10.1016/j.ijms.2025.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The Structure for Lossless Ion Manipulation (SLIM) platform is a powerful analytical separation tool allowing ultra-long serpentine separation path spanning hundreds of meters. In SLIM, transient fields called Traveling waves (T-wave) roll over the ions leading to separation, hence a Stepwise optimization of experimental operating conditions including amplitude, speed, and shape is essential. Here, we have characterized seven T-wave profiles including sine, triangle, square, ramp, reverse ramp, and two decreasing fields as a function of obtained resolution, resolving power and signal intensities. We found out that T-wave patterns with the most uniform electric field and least negative electric fields produce the highest resolution (reverse ramp). Both signal intensity and resolution are favorable at mid-range T-wave amplitude and speeds. The inverse gating could potentially improve the obtained resolutions as much as 35 %, in the case of reverse ramp, within 1.5 m of separation path.
Collapse
Affiliation(s)
- Latif Mohsen
- Mechanical Engineering Department, Purdue University, West Lafayette, IN, USA
| | - Xi Chen
- Mechanical Engineering Department, Purdue University, West Lafayette, IN, USA
- Sartorius AG
| | - Gandhi Viraj
- Mechanical Engineering Department, Purdue University, West Lafayette, IN, USA
- Pacific Northwest National Laboratory (PNNL)
| | - Hua Leyan
- Mechanical Engineering Department, Purdue University, West Lafayette, IN, USA
| | - Brian Clowers
- Department of Chemistry, Washington State University, Pullman, WA, 99164, United States
| | | |
Collapse
|
2
|
Wu D, Lu J, Zheng N, Elsehrawy MG, Alfaiz FA, Zhao H, Alqahtani MS, Xu H. Utilizing nanotechnology and advanced machine learning for early detection of gastric cancer surgery. ENVIRONMENTAL RESEARCH 2024; 245:117784. [PMID: 38065392 DOI: 10.1016/j.envres.2023.117784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024]
Abstract
Nanotechnology has emerged as a promising frontier in revolutionizing the early diagnosis and surgical management of gastric cancers. The primary factors influencing curative efficacy in GIC patients are drug inefficacy and high surgical and pharmacological therapy recurrence rates. Due to its unique optical features, good biocompatibility, surface effects, and small size effects, nanotechnology is a developing and advanced area of study for detecting and treating cancer. Considering the limitations of GIC MRI and endoscopy and the complexity of gastric surgery, the early diagnosis and prompt treatment of gastric illnesses by nanotechnology has been a promising development. Nanoparticles directly target tumor cells, allowing their detection and removal. It also can be engineered to carry specific payloads, such as drugs or contrast agents, and enhance the efficacy and precision of cancer treatment. In this research, the boosting technique of machine learning was utilized to capture nonlinear interactions between a large number of input variables and outputs by using XGBoost and RNN-CNN as a classification method. The research sample included 350 patients, comprising 200 males and 150 females. The patients' mean ± SD was 50.34 ± 13.04 with a mean age of 50.34 ± 13.04. High-risk behaviors (P = 0.070), age at diagnosis (P = 0.034), distant metastasis (P = 0.004), and tumor stage (P = 0.014) were shown to have a statistically significant link with GC patient survival. AUC was 93.54%, Accuracy 93.54%, F1-score 93.57%, Precision 93.65%, and Recall 93.87% when analyzing stomach pictures. Integrating nanotechnology with advanced machine learning techniques holds promise for improving the diagnosis and treatment of gastric cancer, providing new avenues for precision medicine and better patient outcomes.
Collapse
Affiliation(s)
- Dan Wu
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, 323000, Zhejiang, China
| | - Jianhua Lu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Nan Zheng
- School of Pharmacy, Wenzhou Medicine University, Wenzhou, 325000, China
| | - Mohamed Gamal Elsehrawy
- Prince Sattam Bin Abdulaziz University, College of Applied Medical Sciences, Kingdom of Saudi Arabia; Nursing Faculty, Port-Said University, Egypt.
| | - Faiz Abdulaziz Alfaiz
- Department of Biology, College of Science, Majmaah University, Al-Majmaah, 11952, Saudi Arabia.
| | - Huajun Zhao
- School of Pharmacy, Wenzhou Medicine University, Wenzhou, 325000, China.
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Hongtao Xu
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
3
|
Zhao Y, Gan Y, Chen J, Zheng H, Chang Y, Lin C. Recent reports on the sensing strategy and the On-site detection of illegal drugs. RSC Adv 2024; 14:6917-6929. [PMID: 38410368 PMCID: PMC10895702 DOI: 10.1039/d3ra06931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 02/28/2024] Open
Abstract
In this review, works on the on-site detection of illegal drugs in recent years are summarised and discussed, most of which were published within the past five years. The detection methods are categorised as colourimetric, fluorescence, Raman spectrometry, ion mobility spectrometry, electrochemistry, and mass spectrometry. Also, strategies that are possibly suitable for on-site detection and the actual instrumentation to be used in the field are listed.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
- Institute of Forensic Science of the Ministry of Public Security No. 17 Muxidi Nanli, West City District 100038 Beijing China
| | - Yumeng Gan
- Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University 9 Zengcuoan West Road 361005 Xiamen China
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen China
| | - Jun Chen
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
| | - Hui Zheng
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
| | - Ying Chang
- Institute of Forensic Science of the Ministry of Public Security No. 17 Muxidi Nanli, West City District 100038 Beijing China
| | - Changxu Lin
- Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University 9 Zengcuoan West Road 361005 Xiamen China
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen China
| |
Collapse
|
4
|
Naylor CN, Schaefer C, Kirk AT, Zimmermann S. The origin of isomerization of aniline revealed by high kinetic energy ion mobility spectrometry (HiKE-IMS). Phys Chem Chem Phys 2023; 25:1139-1152. [PMID: 36515135 DOI: 10.1039/d2cp01994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although aniline is a relatively simple small molecule, the origin of its two peaks observed in ion mobility spectrometry (IMS) has remained under debate for at least 30 years. First hypothesized as a difference in protonation site (amine vs. benzene ring), each ion mobility peak differs by one Dalton when coupled with mass spectrometry where the faster mobility peak is the molecular ion peak, and the slower mobility peak is protonated. To complicate the deconvolution of structures, some previous literature shows the peaks as unresolved and thus proposes these species exist in equilibrium. In this work, we show that when measured with high kinetic energy ion mobility spectrometry (HiKE-IMS), the two peaks observed in spectra of both aniline and all n-fluoroanilines are fully separated (chromatographic resolution from 2-7, Rp > 110) and therefore not in equilibrium. The HiKE-IMS is capable of changing ionization conditions independently of drift region conditions, and our results agree with previous literature showing that ionization source settings (including possible fragmentation at this stage) are the only influence determining the speciation of the two aniline peaks. Finally, when the drift and reactant gas are changed to nitrogen, a third peak appears at high E/N for 2-fluoroaniline and 4-fluoroaniline for the first time in reported literature. As observed by HiKE-IMS-MS, the new third peak is also protonated showing that the para-protonated aniline and resulting fragment ion, molecular ion aniline, can be fully separated in the mobility domain for the first time. The appearance of the third peak is only possible due to the increased separation of the other two peaks within the HiKE-IMS.
Collapse
Affiliation(s)
- Cameron N Naylor
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, 30167 Hannover, Germany.
| | - Christoph Schaefer
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, 30167 Hannover, Germany.
| | - Ansgar T Kirk
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, 30167 Hannover, Germany.
| | - Stefan Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, 30167 Hannover, Germany.
| |
Collapse
|
5
|
Lebedev AV, Kolbinev SS. The $${\text{NH}}_{4}^{ + }$$(H2O)n Reagent Ion: Calculations of the Structure, Thermodynamic Parameters of Hydration, Equilibrium Composition, and Mobility. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822140039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
6
|
Statistical analysis for explosives detection system test and evaluation. Sci Rep 2022; 12:250. [PMID: 34996947 PMCID: PMC8742070 DOI: 10.1038/s41598-021-03755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022] Open
Abstract
The verification of trace explosives detection systems is often constrained to small sample sets, so it is important to support the significance of the results with statistical analysis. As binary measurements, the trials are assessed using binomial statistics. A method is described based on the probability confidence interval and expressed in terms of the upper confidence interval bound that reports the probability of successful detection and its level of statistical confidence. These parameters provide useful measures of the system’s performance. The propriety of combining statistics for similar tests—for example in trace detection trials of an explosive on multiple surfaces—is examined by statistical tests. The use of normal statistics is commonly applied to binary testing, but the confidence intervals are known to behave poorly in many circumstances, including small sample numbers. The improvement of the normal approximation with increasing sample number is shown not to be substantial for the typical numbers used in this type of explosives detection system testing, and binary statistics are preferred. The methods and techniques described here for testing trace detection can be applied as well to performance testing of explosives detection systems in general.
Collapse
|
7
|
Liu J, Wang K, Li Y, Zhou B, Tseng K, Zhang X, Su Y, Sun W, Guo Y. Rapid Discrimination of Citrus reticulata 'Chachi' by Electrospray Ionization-Ion Mobility-High-Resolution Mass Spectrometry. Molecules 2021; 26:7015. [PMID: 34834108 PMCID: PMC8622672 DOI: 10.3390/molecules26227015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
A common idea is that some dishonest businessmen often disguise Citrus reticulata Blanco varieties as Citrus reticulata 'Chachi', which places consumers at risk of economic losses. In this work, we combined high-resolution ion mobility (U-shaped mobility analyzer) with high-resolution mass spectrometry to rapidly distinguish Citrus reticulata 'Chachi' from other Citrus species. The samples were analyzed directly through simple extraction and the analytes were separated in one second. It only took about 1 min to perform a cycle of sample analysis and data acquisition. The results showed that polymethoxylated flavones and their isomers were separated easily by the ion mobility analyzer and preliminarily identified according to the accurate mass. Moreover, the collision cross-section values of all analytes, which could be used as auxiliary parameters to characterize and identify the compounds in the samples, were measured. Twenty-four samples were grouped as two clusters by multivariate analysis, which meant that Citrus reticulata 'Chachi' could be effectively differentiated. It was confirmed that the developed method had the potential to rapidly separate polymethoxylated flavones and distinguish between Citrus reticulata 'Chachi' and other Citrus reticulata Blanco varieties.
Collapse
Affiliation(s)
- Juan Liu
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China;
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| | - Keke Wang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Yuling Li
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| | - Bowen Zhou
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| | - Kuofeng Tseng
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Yue Su
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China;
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| |
Collapse
|
8
|
Paul M, Tannenberg R, Tscheuschner G, Ponader M, Weller MG. Cocaine Detection by a Laser-Induced Immunofluorometric Biosensor. BIOSENSORS-BASEL 2021; 11:bios11090313. [PMID: 34562903 PMCID: PMC8466613 DOI: 10.3390/bios11090313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/27/2022]
Abstract
The trafficking of illegal drugs by criminal networks at borders, harbors, or airports is an increasing issue for public health as these routes ensure the main supply of illegal drugs. The prevention of drug smuggling, including the installation of scanners and other analytical devices to detect small traces of drugs within a reasonable time frame, remains a challenge. The presented immunosensor is based on a monolithic affinity column with a large excess of immobilized hapten, which traps fluorescently labeled antibodies as long as the analyte cocaine is absent. In the presence of the drug, some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and microfluidic chip-based mixing devices and flow cells. The biosensor achieved limits of detection of 7 ppt (23 pM) of cocaine with a response time of 90 s and a total assay time below 3 min. With surface wipe sampling, the biosensor was able to detect 300 pg of cocaine. This immunosensor belongs to the most sensitive and fastest detectors for cocaine and offers near-continuous analyte measurement.
Collapse
|
9
|
Zhu W, Benkwitz F, Kilmartin PA. Volatile-Based Prediction of Sauvignon Blanc Quality Gradings with Static Headspace-Gas Chromatography-Ion Mobility Spectrometry (SHS-GC-IMS) and Interpretable Machine Learning Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3255-3265. [PMID: 33661647 DOI: 10.1021/acs.jafc.0c07899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The analytical scope of static headspace-gas chromatography-ion mobility spectrometry (SHS-GC-IMS) was applied to wine aroma analysis for the first time. The method parameters were first fine-tuned to achieve optimal analytical results, before the method stability was demonstrated, in terms of repeatability and reproducibility. Succinct qualitative identification of compounds was also realized, with the identification of several volatiles that have seldom been described previously in Sauvignon Blanc wine, such as methyl acetate, ethyl formate, and amyl acetate. Using the SHS-GC-IMS data in an untargeted approach, computer modeling of large datasets was applied to link aroma chemistry via prediction models to wine sensory quality gradings. Six machine learning models were compared, and artificial neural network (ANN) returned the most promising performance with a prediction accuracy of 95.4%. Despite its inherent complexity, the ANN model offered intriguing insights on the influential volatiles that correlated well with higher and lower sensory gradings. These findings could, in the future, guide winemakers in establishing wine quality, particularly during blending operations prior to bottling.
Collapse
Affiliation(s)
- Wenyao Zhu
- Wine Science Programme, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Drylands Winery, Constellation Brands NZ, 237 Hammerichs Road, Blenheim 7273, New Zealand
| | - Frank Benkwitz
- Drylands Winery, Constellation Brands NZ, 237 Hammerichs Road, Blenheim 7273, New Zealand
| | - Paul A Kilmartin
- Wine Science Programme, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
10
|
Chiluwal U, Eiceman GA. Quantitative response to nitrite from field-induced decomposition of the chloride adduct of RDX by reactive stage tandem ion mobility spectrometry. Analyst 2021; 146:565-573. [PMID: 33170181 DOI: 10.1039/d0an01778g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An additional dimension of selectivity for the determination of RDX by ion mobility spectrometry (IMS) was introduced through field-induced decomposition of RDX·Cl- to NO2- on a spectral baseline free of interfering peaks. In this variant of reactive stage tandem IMS, the explosive ion is decomposed selectively in the presence of an interferent and from significantly convolved peaks which were mobility isolated within a narrow range of drift times using dual ion shutters. Field-induced decomposition at 170 °C and field strength of 112 Td (∼16 kV cm-1) provided 15% decomposition yield and RDX, amid interferent, was detected decisively even when peaks differed in reduced mobility coefficients (Ko) by only 0.02 cm2 V-1 s-1. A nitrite peak with S/N of 8.5 was observed with vapour concentrations of 54 ppb for RDX and 329 ppb for Interferent A in the ionization volume corresponding to 2 ng of RDX and 100 ng of Interferent A deposited on sample traps in the thermal desorption inlet. Findings on quantitative response suggest the presence of excessive amounts of interferent caused ionization suppression of RDX. Still, RDX was determined quantitatively using sequential processing of ions by mobility isolation, selective field induced decomposition, and mobility analysis in a second drift region.
Collapse
Affiliation(s)
- Umesh Chiluwal
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
| | | |
Collapse
|
11
|
Smith BL, Boisdon C, Young IS, Praneenararat T, Vilaivan T, Maher S. Flexible Drift Tube for High Resolution Ion Mobility Spectrometry (Flex-DT-IMS). Anal Chem 2020; 92:9104-9112. [PMID: 32479060 PMCID: PMC7467419 DOI: 10.1021/acs.analchem.0c01357] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
This paper describes,
in detail, the development of a novel, low-cost,
and flexible drift tube (DT) along with an associated ion mobility
spectrometer system. The DT is constructed from a flexible printed
circuit board (PCB), with a bespoke “dog-leg” track
design, that can be rolled up for ease of assembly. This approach
incorporates a shielding layer, as part of the flexible PCB design,
and represents the minimum dimensional footprint conceivable for a
DT. The low thermal mass of the polyimide substrate and overlapping
electrodes, as afforded by the dog-leg design, allow for efficient
heat management and high field linearity within the tube–achieved
from a single PCB. This is further enhanced by a novel double-glazing
configuration which provides a simple and effective means for gas
management, minimizing thermal variation within the assembly. Herein,
we provide a full experimental characterization of the flexible DT
ion mobility spectrometer (Flex-DT-IMS) with corresponding electrodynamic
(Simion 8.1) and fluid dynamic (SolidWorks) simulations. The Flex-DT-IMS
is shown to have a resolution >80 and a detection limit of low
nanograms
for the analysis of common explosives (RDX, PETN, HMX, and TNT).
Collapse
Affiliation(s)
- Barry L Smith
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Cedric Boisdon
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Iain S Young
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 3BX, U.K
| | - Thanit Praneenararat
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Simon Maher
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| |
Collapse
|
12
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
13
|
|
14
|
Forbes TP, Lawrence J, Verkouteren JR, Verkouteren RM. Discriminative potential of ion mobility spectrometry for the detection of fentanyl and fentanyl analogues relative to confounding environmental interferents. Analyst 2019; 144:6391-6403. [PMID: 31579898 PMCID: PMC7008973 DOI: 10.1039/c9an01771b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The opioid crisis and emergence of fentanyl, fentanyl analogues, and other synthetic opioids has highlighted the need for sensitive and robust detection for interdiction at screening points, notably vehicles at border crossings and packages at postal facilities. This work investigates the discriminative potential, sensitivity and specificity, of ion mobility spectrometry (IMS) for the detection of fentanyl and fifteen (15) fentanyl-related compounds (analogues, other opioids, and metabolites) relative to confounding environmental interferents. The environmental background interferent levels, frequency and intensity, were derived from over 10 000 screening samples collected from delivery vehicles entering a federal site. A receiver operating characteristic (ROC) curve methodology was employed to quantify the relationship between sensitivity and specificity for these target compounds on two instruments/configurations. These instrument configurations differed in desorption and drift tube temperatures, reactant ion dopant chemistry, and analysis time. This work identified reduced mobility areas of high interference that resulted in increased false positive rates (FPR), effectively reducing sensitivity (true positive rate: TPR) in those regions. Except for a few target compounds on either of the instruments that exhibited elevated FPRs, detection of fentanyl and fentanyl-related species was achieved at single to tens of nanograms with ≥90% TPR and ≤2% FPR. This work established the importance of systematic environmental background characterization at each specific screening setting in evaluating a platform's true performance.
Collapse
Affiliation(s)
- Thomas P Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA.
| | | | | | | |
Collapse
|
15
|
Forbes TP, Staymates M, Sisco E. Broad spectrum infrared thermal desorption of wipe-based explosive and narcotic samples for trace mass spectrometric detection. Analyst 2018; 142:3002-3010. [PMID: 28744547 DOI: 10.1039/c7an00721c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s-1 with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.
Collapse
Affiliation(s)
- Thomas P Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA.
| | | | | |
Collapse
|
16
|
Forbes TP, Sisco E, Staymates M. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry. Anal Chem 2018; 90:6419-6425. [PMID: 29701987 PMCID: PMC6102708 DOI: 10.1021/acs.analchem.8b01037] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.
Collapse
Affiliation(s)
- Thomas P. Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| | - Edward Sisco
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| | - Matthew Staymates
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA
| |
Collapse
|
17
|
Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH. High Accuracy Ion Mobility Spectrometry for Instrument Calibration. Anal Chem 2018. [DOI: 10.1021/acs.analchem.7b04987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Brian C. Hauck
- Department of Chemistry, Washington State University, 305 Fulmer Hall, Pullman, Washington 99164, United States
| | - William F. Siems
- Department of Chemistry, Washington State University, 305 Fulmer Hall, Pullman, Washington 99164, United States
| | - Charles S. Harden
- LEIDOS—U.S. Army Edgewood Chemical Biological Center Operations, P.O. Box 68, Gunpowder, Maryland 21010, United States
| | - Vincent M. McHugh
- U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Herbert H. Hill
- Department of Chemistry, Washington State University, 305 Fulmer Hall, Pullman, Washington 99164, United States
| |
Collapse
|
18
|
Hollerbach A, Baird Z, Cooks RG. Ion Separation in Air Using a Three-Dimensional Printed Ion Mobility Spectrometer. Anal Chem 2017; 89:5058-5065. [PMID: 28383249 DOI: 10.1021/acs.analchem.7b00469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam Hollerbach
- Chemistry
Department, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | | | - R. Graham Cooks
- Chemistry
Department, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|