1
|
Ting WT, Ali MY, Mitea V, Wang MJ, Howlader MMR. Polyaniline-based bovine serum albumin imprinted electrochemical sensor for ultra-trace-level detection in clinical and food safety applications. Int J Biol Macromol 2024; 277:134137. [PMID: 39067725 DOI: 10.1016/j.ijbiomac.2024.134137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Monitoring bovine serum albumin (BSA) at ultra-low levels is crucial for clinical and food safety applications, as it plays a significant role in identifying various health conditions and potential risks, necessitating fast, trace-level detection of BSA. This study proposes an approach to address these challenges by employing molecularly imprinted polymer (MIP) to develop an ultra-trace-level and cost-effective BSA sensing platform. The MIP electrochemical sensor was developed using polyaniline (PANI) combined with the protein crosslinker glutaraldehyde (GA) to optimize BSA surface imprinting in the MIP. As a result, the sensor achieves a sensitivity of 1.24 μA/log(pg/mL), with a picomolar detectable limit of 2.3 pg/mL (0.035 pM) and a wide detection range from 20 pg/mL to 200,000 pg/mL (0.303 pM to 3030 pM), making it suitable for clinical and food safety applications. Additionally, the study explores the interaction between an acidic surfactant protein eluent (acetic acid with sodium dodecyl sulfate, AcOH-SDS) and BSA vacant sites, enhancing recognition and re-binding. The PANI-based MIP sensor demonstrates initial feasibility and practicality in commercial milk and real human serum, opening avenues for early disease detection and ensuring food safety in BSA-related immune responses.
Collapse
Affiliation(s)
- Wei-Ting Ting
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan; Taiwan Building Technology Center, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan
| | - Md Younus Ali
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Victor Mitea
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan.
| | - Matiar M R Howlader
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
2
|
Wang L, Li N, Zhang X, Bobrinetskiy I, Gadjanski I, Fu W. Sensing with Molecularly Imprinted Membranes on Two-Dimensional Solid-Supported Substrates. SENSORS (BASEL, SWITZERLAND) 2024; 24:5119. [PMID: 39204816 PMCID: PMC11358988 DOI: 10.3390/s24165119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Molecularly imprinted membranes (MIMs) have been a focal research interest since 1990, representing a breakthrough in the integration of target molecules into membrane structures for cutting-edge sensing applications. This paper traces the developmental history of MIMs, elucidating the diverse methodologies employed in their preparation and characterization on two-dimensional solid-supported substrates. We then explore the principles and diverse applications of MIMs, particularly in the context of emerging technologies encompassing electrochemistry, surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), and the quartz crystal microbalance (QCM). Furthermore, we shed light on the unique features of ion-sensitive field-effect transistor (ISFET) biosensors that rely on MIMs, with the notable advancements and challenges of point-of-care biochemical sensors highlighted. By providing a comprehensive overview of the latest innovations and future trajectories, this paper aims to inspire further exploration and progress in the field of MIM-driven sensing technologies.
Collapse
Affiliation(s)
- Lishuang Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Nan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Xiaoyan Zhang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Ivan Bobrinetskiy
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1a, 21000 Novi Sad, Serbia; (I.B.); (I.G.)
| | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1a, 21000 Novi Sad, Serbia; (I.B.); (I.G.)
| | - Wangyang Fu
- School of Materials Science and Engineering, Tsinghua University, No. 1 Tsinghua Yuan, Haidian District, Beijing 100084, China
| |
Collapse
|
3
|
Liang Y, Wang H, Xu Y, Pan H, Guo K, Zhang Y, Chen Y, Liu D, Zhang Y, Yao C, Yu Y, Shi G. A novel molecularly imprinted polymer composite based on polyaniline nanoparticles as sensitive sensors for parathion detection in the field. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Bu J, Deng Z, Liu H, Li J, Wang D, Yang Y, Zhong S. Current methods and prospects of coronavirus detection. Talanta 2021; 225:121977. [PMID: 33592725 PMCID: PMC7833523 DOI: 10.1016/j.talanta.2020.121977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022]
Abstract
SARS-COV-2 is a novel coronavirus discovered in Wuhan in December 30, 2019, and is a family of SARS-COV (severe acute respiratory syndrome coronavirus), that is, coronavirus family. After infection with SARS-COV-2, patients often experience fever, cough, gas prostration, dyspnea and other symptoms, which can lead to severe acute respiratory syndrome (SARS), kidney failure and even death. The SARS-COV-2 virus is particularly infectious and has led to a global infection crisis, with an explosion in the number of infections. Therefore, rapid and accurate detection of the virus plays a vital role. At present, many detection methods are limited in their wide application due to their defects such as high preparation cost, poor stability and complex operation process. Moreover, some methods need to be operated by professional medical staff, which can easily lead to infection. In order to overcome these problems, a Surface molecular imprinting technology (SM-MIT) is proposed for the first time to detect SARS-COV-2 virus. For this SM-MIT method, this review provides detailed detection principles and steps. In addition, this method not only has the advantages of low cost, high stability and good specificity, but also can detect whether it is infected at designated points. Therefore, we think SM-MIT may have great potential in the detection of SARS-COV-2 virus.
Collapse
Affiliation(s)
- Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - De Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
5
|
Roushani M, Sarabaegi M, Rostamzad A. Novel electrochemical sensor based on polydopamine molecularly imprinted polymer for sensitive and selective detection of Acinetobacter baumannii. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01936-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Zhang X, Du X. Creation of glycoprotein imprinted self-assembled monolayers with dynamic boronate recognition sites and imprinted cavities for selective glycoprotein recognition. SOFT MATTER 2020; 16:3039-3049. [PMID: 32129364 DOI: 10.1039/c9sm02313e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glycoproteins are involved in the pathogenesis and development of many diseases and are used as biomarkers for disease diagnosis. It is highly desirable to develop highly sensitive and selective methods for the detection of glycoproteins without the use of antibodies. Imprinting of proteins represents one of the most challenging tasks. Glycoprotein imprinted self-assembled monolayers (SAMs) were created, for the first time, from an oligo(ethylene glycol) (OEG) terminated 1,2-dithiolane derivative linked through an alkyl chain incorporated with two amide groups (DHAP) and combined functional thiols of p-mercaptophenylboronic acid (PMBA) and p-aminothiophenol (PATP) in aqueous media, without the use of polymerization initiators. Combined action of PMBA and PATP was essential for the development of boronate recognition sites for glycoproteins at the physiological pH, attributed to the water molecule-mediated Lewis acid-base interactions between the electron-deficient PMBA and the electron-rich PATP. DHAP played key roles not only in cementation of imprinted cavities by means of double hydrogen bond networks through the amide groups but also in resistance to nonspecific protein binding by terminal OEG moieties, as well as hydrogen bond binding sites from the amide groups exposed to imprinted cavities. The created glycoprotein imprinted SAMs showed excellent recognition selectivity of target glycoproteins. The strategy for tailor-made glycoprotein imprinted SAMs explores a new avenue to the creation of intelligent biomaterials and fabrication of chemosensors.
Collapse
Affiliation(s)
- Xianfeng Zhang
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | | |
Collapse
|
7
|
Liao X, Fang JA, Zhao JL, Ruan Q, Zeng X, Luo QY, Redshaw C. An efficient ICT-based ratio/colorimetric tripodal azobenzene probe for the recognition/discrimination of F -, AcO - and H 2PO 4- anions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117174. [PMID: 31170608 DOI: 10.1016/j.saa.2019.117174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/27/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
The tripodal probe L was readily prepared via introducing rhodamine and azobenzene groups in a two-step procedure. Studies of the recognition properties indicated that probe L exhibited high sensitivity and selectivity towards F-, AcO- and H2PO4- through a ratiometric colorimetric response with low detection limits of the order of 10-7 M. The complexation behaviour was fully investigated by spectral titration, 1H NMR spectroscopic titration and mass spectrometry. Probe L not only recognizes F-, AcO- and H2PO4-, but can also distinguish between these three anions via the different ratiometric behaviour in their UV-vis spectra (387/505 nm for L-H2PO4-, 387/530 nm for L-AcO- and 387/575 nm for L-F- complex) or via different colour changes (light coral for L-H2PO4-, light pink for L-AcO- and violet for the L-F- complex). Additionally, given the presence of NH and OH groups in probe L, which can be protonated and deprotonated, probe L further exhibited an excellent pH response over a wide pH range (pH 3 to pH 12).
Collapse
Affiliation(s)
- Xian Liao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Jun-An Fang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Jiang-Lin Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China.
| | - Qin Ruan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xi Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.
| | - Qing-Ying Luo
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China.
| | - Carl Redshaw
- Dept. of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
8
|
Wang L, Lin Q, Zhang Y, Liu Y, Yasin A, Zhang L. Design and synthesis of supramolecular functional monomers bearing urea and norbornene motifs. RSC Adv 2019; 9:20058-20064. [PMID: 35514692 PMCID: PMC9065584 DOI: 10.1039/c9ra01852b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Three sets of functional monomers namely urea-based, 2-ureido-4[1H]-primidone (UPy)-based and norbornene based functional monomers were designed and synthesized. These functional monomers (FM) were obtained in decent yields using amine and isocyanate/norbornene as starting materials. Methacrylate and styrene isocyanate with 1,4-diaminobutane/tris(2-aminoethyl)amine were chosen for the synthesis of symmetrical, asymmetrical and three-branched urea-functional monomers, respectively. UPy-based FMs were synthesized with isocyanate and 2-amino-4-hydroxy-6-methylpyrimidine. The synthesis of these monomers feature short reaction times, mild reaction conditions and no need for column chromatographic purification. Furthermore, the norbornene based FM was used for preparing molecularly imprinted polymers (MIPs) by Ring-Opening Metathesis Polymerization (ROMP). Results showed that these synthetic routes represent a convenient and useful approach for synthesis of novel functional monomers.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering Urumqi 830023 China +86-991-3838957 +86-18129307169.,Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Qifeng Lin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences Urumqi Xinjiang 830011 China
| | - Yagang Zhang
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering Urumqi 830023 China +86-991-3838957 +86-18129307169.,Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yanxia Liu
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering Urumqi 830023 China +86-991-3838957 +86-18129307169.,Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Akram Yasin
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China
| |
Collapse
|
9
|
Ricotta V, Yu Y, Clayton N, Chuang YC, Wang Y, Mueller S, Levon K, Simon M, Rafailovich M. A chip-based potentiometric sensor for a Zika virus diagnostic using 3D surface molecular imprinting. Analyst 2019; 144:4266-4280. [PMID: 31180088 DOI: 10.1039/c9an00580c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The latest Zika virus (ZIKV) pandemic caused great international concern from explosively proliferating throughout the Americas. Currently, there is no vaccine to prevent Zika virus infection and available tests rely on antibodies or RNA. Unfortunately, antibody-based detection systems can result in false positive results and RNA-based detection systems are costly, time-consuming, and impractical for testing in remote regions. In this study, a potential point-of-care (POC) diagnostic system was developed using a chip-based potentiometric sensor to detect Zika virus using a 3D molecular imprinting technique. This chip-based potentiometric sensor system was able to detect 10-1 PFU mL-1 ZIKV in a buffered solution under 20 minutes without any sample manipulation. This sensor was tested against Dengue virus at clinical viral loads and showed no sign of cross-reactivity. When tested against human saliva samples containing clinical viral loads, this sensor was able to detect 10 PFU mL-1 ZIKV among the pool of bio-macromolecules. The high sensitivity and high selectivity demonstrated here proved that this lab-on-a-chip diagnostic has the potential to become a POC detection system for rapid and accurate screening of flaviviruses.
Collapse
Affiliation(s)
- Vincent Ricotta
- Department of Materials Science and Engineering, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
| | - Yingjie Yu
- Department of Materials Science and Engineering, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
| | - Nicholas Clayton
- Department of Materials Science and Engineering, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
| | - Ya-Chen Chuang
- Department of Materials Science and Engineering, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
| | - Yantian Wang
- Department of Materials Science and Engineering, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
| | | | - Kalle Levon
- Department of Chemical and Biological Sciences, Polytechnic Institute of NYU, Brooklyn, NY 11201, USA
| | - Marcia Simon
- Department of Oral Biology and Pathology, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Miriam Rafailovich
- Department of Materials Science and Engineering, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
| |
Collapse
|
10
|
Liu J, Geng Z, Fan Z, Liu J, Chen H. Point-of-care testing based on smartphone: The current state-of-the-art (2017–2018). Biosens Bioelectron 2019; 132:17-37. [DOI: 10.1016/j.bios.2019.01.068] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 12/20/2022]
|
11
|
Yu Y, You J, Sun Z, Li G, Ji Z, Zhang S, Zhou X. Determination of residual organophosphorus thioester pesticides in agricultural products by chemical isotope-labelling liquid chromatography-tandem mass spectrometry coupled with in-syringe dispersive solid phase clean-up and in situ cleavage. Anal Chim Acta 2019; 1055:44-55. [DOI: 10.1016/j.aca.2018.12.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 01/03/2023]
|
12
|
Chiang HC, Wang Y, Zhang Q, Levon K. Optimization of the Electrodeposition of Gold Nanoparticles for the Application of High ly Sensitiv e, Label-Free Biosensor. BIOSENSORS 2019; 9:E50. [PMID: 30935158 PMCID: PMC6628353 DOI: 10.3390/bios9020050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022]
Abstract
A highly sensitive electrochemical biosensor with a signal amplification platform of electrodeposited gold nanoparticle (AuNP) has been developed and characterized. The sizes of the synthesized AuNP were found to be critical for the performance of biosensor in which the sizes were dependent on HAuCl₄ and acid concentrations; as well as on scan cycles and scan rates in the gold electro-reduction step. Systematic investigations of the adsorption of proteins with different sizes from aqueous electrolyte solution onto the electrodeposited AuNP surface were performed with a potentiometric method and calibrated by design of experiment (DOE). The resulting amperometric glucose biosensors was demonstrated to have a low detection limit (> 50M) and a wide linear range after optimization with AuNP electrodeposition.
Collapse
Affiliation(s)
- Hao-Chun Chiang
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Six Metrotech Center, Brooklyn, NY 11201, USA.
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072 Tianjin, China.
| | - Qi Zhang
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Six Metrotech Center, Brooklyn, NY 11201, USA.
| | - Kalle Levon
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Six Metrotech Center, Brooklyn, NY 11201, USA.
| |
Collapse
|
13
|
Delivery of platinum (II) drugs with bulky ligands in trans-geometry for overcoming cisplatin drug resistance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:96-104. [DOI: 10.1016/j.msec.2018.10.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/02/2018] [Accepted: 10/30/2018] [Indexed: 10/28/2022]
|
14
|
Auerbach Y, Isseroff R, Clayton N, Hulyalkar M, Todt A, Ricotta V, Rafailovich M. Reusable Surface Molecular Imprint Biosensors Aided by Naturally Occurring Surface Roughness Indices for Point-of-Care Diagnostics. ACTA ACUST UNITED AC 2019. [DOI: 10.1557/adv.2019.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Yu Y, You J, Sun Z, Ji Z, Hu N, Zhou W, Zhou X. HPLC determination of γ-aminobutyric acid and its analogs in human serum using precolumn fluorescence labeling with 4-(carbazole-9-yl)-benzyl chloroformate. J Sep Sci 2019; 42:826-833. [PMID: 30593727 DOI: 10.1002/jssc.201801108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/09/2018] [Accepted: 12/09/2018] [Indexed: 11/08/2022]
Abstract
In this study, a simple analytical method for the determination of γ-aminobutyric acid, gabapentin, and baclofen by using high-performance liquid chromatography with fluorescence detection was developed. An amidogen-reactive fluorescence labeling reagent, 4-(carbazole-9-yl)-benzyl chloroformate was first used to sensitively label these analytes. The completed labeling of these analytes can be finished rapidly only within 5 min at the room temperature (25°C) to form 4-(carbazole-9-yl)-benzyl chloroformate labeled fluorescence derivatives. These labeled derivatives expressed strong fluorescence property with the maximum excitation and emission wavelengths of 280 and 380 nm, respectively. The labeled derivatives were analyzed using a reversed-phase Eclipse SB-C18 column within 10 min with satisfactory shapes. Excellent linearity (R2 > 0.995) for all analytes was achieved with the limits of detection and the limits of quantitation in the range of 0.25-0.35 and 0.70-1.10 μg/L, respectively. The proposed method was used for the simultaneous determination of γ-aminobutyric acid and its analogs in human serum with satisfactory recoveries in the range of 94.5-97.5%.
Collapse
Affiliation(s)
- Yanxin Yu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China.,Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, P. R. China
| | - Jinmao You
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China.,Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, P. R. China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, P. R. China
| | - Zhongyin Ji
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China
| | - Wu Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China
| | - Xuxia Zhou
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
16
|
Song H, Quan F, Yu Z, Zheng M, Ma Y, Xiao H, Ding F. Carboplatin prodrug conjugated Fe3O4 nanoparticles for magnetically targeted drug delivery in ovarian cancer cells. J Mater Chem B 2019; 7:433-442. [PMID: 32254730 DOI: 10.1039/c8tb02574f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The magnetically targeted NPs@carboplatin can act as a drug delivery system and will have great potential in ovarian cancer therapeutic applications.
Collapse
Affiliation(s)
- Haiqin Song
- Department of General Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine, and Shanghai Minimally Invasive Surgery Center
- Shanghai
- P. R. China
| | - Feifei Quan
- The First Affiliated Hospital of University of South China
- Hengyang
- China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences
- Guangdong Provincial Key Laboratory of New Drug Screening
- Southern Medical University
- Guangzhou
- China
| | - Minhua Zheng
- Department of General Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine, and Shanghai Minimally Invasive Surgery Center
- Shanghai
- P. R. China
| | - Yan Ma
- The First Affiliated Hospital of University of South China
- Hengyang
- China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Fang Ding
- Nanshan District Key Lab for Biopolymers and Safety Evaluation
- Shenzhen Key Laboratory of Polymer Science and Technology
- Guangdong Research Center for Interfacial Engineering of Functional Materials
- College of Materials Science and Engineering
- Shenzhen University
| |
Collapse
|
17
|
Peptide cleavage-based electrochemical biosensor coupling graphene oxide and silver nanoparticles. Anal Chim Acta 2019; 1047:45-51. [DOI: 10.1016/j.aca.2018.09.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/15/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
|
18
|
Feng KC, Pinkas-Sarafova A, Ricotta V, Cuiffo M, Zhang L, Guo Y, Chang CC, Halada GP, Simon M, Rafailovich M. The influence of roughness on stem cell differentiation using 3D printed polylactic acid scaffolds. SOFT MATTER 2018; 14:9838-9846. [PMID: 30475363 DOI: 10.1039/c8sm01797b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the increase in popularity of 3D printing, an important question arises as to the equivalence between devices manufactured by standard methods vs. those presenting with identical bulk specifications, but manufactured via fused deposition modeling (FDM) printing. Using thermal imaging in conjunction with electron and atomic force microscopy, we demonstrate that large thermal gradients, whose distribution is difficult to predict, are associated with FDM printing and result in incomplete fusion and sharkskin of the printing filament. Even though these features are micro or submicron scale, and hence may not interfere with the intended function of the device, they can have a profound influence if the device comes in contact with living tissue. Dental pulp stem cells were cultured on substrates of identical dimensions, which were either printed or molded from the same PLA stock material. The cultures exhibited significant differences in plating efficiency, migration trajectory, and morphology at early times stemming from attempts by the cells to minimize cytoplasm deformation as they attempt to adhere on the printed surfaces. Even though biomineralization without dexamethasone induction was observed in all cultures at later times, different gene expression patterns were observed on the two surfaces. (Osteogenic markers were upregulated on molded substrates, while odontogenic markers were upregulated on the FDM printed surfaces.) Our results clearly indicate that the method of manufacturing is an important consideration in comparing devices, which come in contact with living tissues.
Collapse
Affiliation(s)
- Kuan-Che Feng
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mu Q, Liu G, Yang D, Kou X, Cao N, Tang Y, Miao P. Ultrasensitive Detection of DNA Based on Exonuclease III-Assisted Recycling Amplification and DNAzyme Motor. Bioconjug Chem 2018; 29:3527-3531. [DOI: 10.1021/acs.bioconjchem.8b00774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qianhui Mu
- Bureau of Facility Support and Budget, Chinese Academy of Sciences, Beijing, 100864, P. R. China
| | - Guangxing Liu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dawei Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Xinyue Kou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ning Cao
- Bureau of Facility Support and Budget, Chinese Academy of Sciences, Beijing, 100864, P. R. China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
20
|
Bhattacharjee R, Moriam S, Nguyen NT, Shiddiky MJA. A bisulfite treatment and PCR-free global DNA methylation detection method using electrochemical enzymatic signal engagement. Biosens Bioelectron 2018; 126:102-107. [PMID: 30396016 DOI: 10.1016/j.bios.2018.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/09/2023]
Abstract
In this paper we report on a bisulfite treatment and PCR amplification-free method for sensitive and selective quantifying of global DNA methylation. Our method utilizes a three-step strategy that involves (i) initial isolation and denaturation of global DNA using the standard isolation protocol and direct adsorption onto a bare gold electrode via gold-DNA affinity interaction, (ii) selective interrogation of methylation sites in adsorbed DNA via methylation-specific 5mC antibody, and (iii) subsequent signal enhancement using an electrochemical-enzymatic redox cycling reaction. In the redox cycling reaction, glucose oxidase (GOx) is used as an enzyme label, glucose as a substrate and ruthenium complex as a redox mediator. We initially investigated the enzymatic properties of GOx by varying glucose and ruthenium concentration to delineate the redox cyclic mechanism of our assay. Because of the fast electron transfer by ruthenium (Ru) complex and intrinsic signal amplification from GOx label, this method could detect as low as 5% methylation level in 50 ng of total DNA input. Moreover, the use of methylation-specific 5mC antibody conjugated GOx makes this assay relatively highly selective for DNA methylation analysis. The data obtained from the electrochemical response for different levels of methylation showed excellent interassay reproducibility of RSD (relative standard deviation) < 5% for n = 3. We believe that this inexpensive, rapid, and sensitive assay will find high relevance as an alternative method for DNA methylation analysis both in research and clinical platforms.
Collapse
Affiliation(s)
- Ripon Bhattacharjee
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Sofia Moriam
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia.
| |
Collapse
|
21
|
Molecular Fingerprints of Hemoglobin on a Nanofilm Chip. SENSORS 2018; 18:s18093016. [PMID: 30205614 PMCID: PMC6165033 DOI: 10.3390/s18093016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 02/05/2023]
Abstract
Hemoglobin is an iron carrying protein in erythrocytes and also an essential element to transfer oxygen from the lungs to the tissues. Abnormalities in hemoglobin concentration are closely correlated with health status and many diseases, including thalassemia, anemia, leukemia, heart disease, and excessive loss of blood. Particularly in resource-constrained settings existing blood analyzers are not readily applicable due to the need for high-level instrumentation and skilled personnel, thereby inexpensive, easy-to-use, and reliable detection methods are needed. Herein, a molecular fingerprints of hemoglobin on a nanofilm chip was obtained for real-time, sensitive, and selective hemoglobin detection using a surface plasmon resonance system. Briefly, through the photopolymerization technique, a template (hemoglobin) was imprinted on a monomeric (acrylamide) nanofilm on-chip using a cross-linker (methylenebisacrylamide) and an initiator-activator pair (ammonium persulfate-tetramethylethylenediamine). The molecularly imprinted nanofilm on-chip was characterized by atomic force microscopy and ellipsometry, followed by benchmarking detection performance of hemoglobin concentrations from 0.0005 mg mL−1 to 1.0 mg mL−1. Theoretical calculations and real-time detection implied that the molecularly imprinted nanofilm on-chip was able to detect as little as 0.00035 mg mL−1 of hemoglobin. In addition, the experimental results of hemoglobin detection on the chip well-fitted with the Langmuir adsorption isotherm model with high correlation coefficient (0.99) and association and dissociation coefficients (39.1 mL mg−1 and 0.03 mg mL−1) suggesting a monolayer binding characteristic. Assessments on selectivity, reusability and storage stability indicated that the presented chip is an alternative approach to current hemoglobin-targeted assays in low-resource regions, as well as antibody-based detection procedures in the field. In the future, this molecularly imprinted nanofilm on-chip can easily be integrated with portable plasmonic detectors, improving its access to these regions, as well as it can be tailored to detect other proteins and biomarkers.
Collapse
|
22
|
Dabrowski M, Lach P, Cieplak M, Kutner W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens Bioelectron 2018; 102:17-26. [DOI: 10.1016/j.bios.2017.10.045] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/21/2017] [Indexed: 02/08/2023]
|
23
|
Wang J, Li S, Han Y, Guan J, Chung S, Wang C, Li D. Poly(Ethylene Glycol)-Polylactide Micelles for Cancer Therapy. Front Pharmacol 2018; 9:202. [PMID: 29662450 PMCID: PMC5890116 DOI: 10.3389/fphar.2018.00202] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022] Open
Abstract
For the treatment of malignancy, many therapeutic agents, including small molecules, photosensitizers, immunomodulators, proteins and genes, and so forth, have been loaded into nanocarriers for controllable cancer therapy. Among these nanocarriers, polymeric micelles have been considered as one of the most promising nanocarriers, some of which have already been applied in different stages of clinical trials. The successful advantages of polymeric micelles from bench to bedside are due to their special core/shell structures, which can carry specific drugs in certain disease conditions. Particularly, poly(ethylene glycol)–polylactide (PEG–PLA) micelles have been considered as one of the most promising platforms for drug delivery. The PEG shell effectively prevents the adsorption of proteins and phagocytes, thereby evidently extending the blood circulation period. Meanwhile, the hydrophobic PLA core can effectively encapsulate many therapeutic agents. This review summarizes recent advances in PEG–PLA micelles for the treatment of malignancy. In addition, future perspectives for the development of PEG–PLA micelles as drug delivery systems are also presented.
Collapse
Affiliation(s)
- Jixue Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shengxian Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingjing Guan
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shirley Chung
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Chunxi Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Di Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
24
|
Han B, Peng T, Yu M, Chi C, Li Y, Hu X, He G. One-pot synthesis of highly fluorescent Fe2+-doped carbon dots for a dual-emissive nanohybrid for the detection of zinc ions and histidine. NEW J CHEM 2018. [DOI: 10.1039/c8nj01858h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fe2+ was confirmed to be the only definitive one of the common metal ions to synthesize the highly fluorescent carbon dots with proline as the carbon resource at 80 °C for visual fluorescence sensing Zn2+ and histidine, respectively.
Collapse
Affiliation(s)
- Bingyan Han
- State Key Laboratory of Fine Chemicals
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- China
| | - Tingting Peng
- State Key Laboratory of Fine Chemicals
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- China
| | - Mingbo Yu
- State Key Laboratory of Fine Chemicals
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- China
| | - Chen Chi
- State Key Laboratory of Fine Chemicals
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- China
| | - Ying Li
- State Key Laboratory of Fine Chemicals
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- China
| | - Xixi Hu
- State Key Laboratory of Fine Chemicals
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- China
| |
Collapse
|
25
|
Wu M, Yang W, Chen S, Yao J, Shao Z, Chen X. Size-controllable dual drug-loaded silk fibroin nanospheres through a facile formation process. J Mater Chem B 2018; 6:1179-1186. [DOI: 10.1039/c7tb03113k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Paclitaxel/doxorubicin-loaded silk fibroin nanospheres were prepared through a facile and green method and showed a synergistic effect on the anti-proliferative activity.
Collapse
Affiliation(s)
- Mi Wu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Wenhua Yang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Sheng Chen
- Department of General Surgery
- Ruijin Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| |
Collapse
|
26
|
Zhang Q, Kaisti M, Prabhu A, Yu Y, Song YA, Rafailovich MH, Rahman A, Levon K. Polyaniline-functionalized ion-sensitive floating-gate FETs for the on-chip monitoring of peroxidase-catalyzed redox reactions. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.130] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Fan Z, Li Z, Liu S, Yang F, Bian Z, Wang Y, Tang G, Zhao Q, Deng H, Liu S. Rapid fluorescence immunoassay of benzo[a]pyrene in mainstream cigarette smoke based on a dual-functional antibody–DNA conjugate. RSC Adv 2018; 8:29562-29569. [PMID: 35547323 PMCID: PMC9085264 DOI: 10.1039/c8ra04915g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/13/2018] [Indexed: 11/24/2022] Open
Abstract
Benzo[a]pyrene (BaP) is considered as one of the most carcinogenic pollutants in cigarette smoke. The development of simple and sensitive BaP screening methods can help assess the risk of cigarette exposure to the human body rapidly. In this report, a rapid fluorescence immunoassay (RFIA) method for the detection of BaP is proposed, the core of which is the synthesis of bifunctional covalent antibody–DNA conjugates for target recognition and signal amplification. Based on the optimization of the SYBR Green I and PAH–BSA concentrations, as well as DNA–antibody immune complex's dilution in the RFIA system, a serial dilution of BaP was tested with this method. The results showed that the linear working range of the RFIA for BaP is 0.46 to 333 ng mL−1, which is much wider than traditional ELISA. The detection limit was 0.32 ng mL−1, which was more sensitive than other methods such as the redox-labeled electrochemical immunoassay method and the competitive piezoelectric biosensor. Then the cross-reactions (CR) of other PAHs in cigarette smoke were evaluated using this RFIA and found that the cross-reactions of naphthalene, anthracene, and pyrene were very low (<1%). The cross-reaction in this RFIA system can be reduced by improving the specificity of the antibody. To the best of our knowledge, this is the first time that the BaP in mainstream cigarette smoke was tested; the RFIA demonstrates fast and simple experimental manipulations and better working curves and sensitivity. Benzo[a]pyrene (BaP) is considered as one of the most carcinogenic pollutants in cigarette smoke.![]()
Collapse
Affiliation(s)
- Ziyan Fan
- China National Tobacco Quality Supervision and Test Center
- Zhengzhou 450001
- China
| | - Zhonghao Li
- China National Tobacco Quality Supervision and Test Center
- Zhengzhou 450001
- China
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center
- Zhengzhou 450001
- China
| | - Fei Yang
- China National Tobacco Quality Supervision and Test Center
- Zhengzhou 450001
- China
| | - Zhaoyang Bian
- China National Tobacco Quality Supervision and Test Center
- Zhengzhou 450001
- China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center
- Zhengzhou 450001
- China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center
- Zhengzhou 450001
- China
| | - Qinxiao Zhao
- School of Basic Medical Science
- Shandong University
- Jinan
- China
| | - Huimin Deng
- China National Tobacco Quality Supervision and Test Center
- Zhengzhou 450001
- China
| | - Shili Liu
- China National Tobacco Quality Supervision and Test Center
- Zhengzhou 450001
- China
| |
Collapse
|
28
|
Lu Z, Liu Y, Lu S, Li Y, Liu X, Qin Y, Zheng L. A highly selective TPE-based AIE fluorescent probe is developed for the detection of Ag+. RSC Adv 2018; 8:19701-19706. [PMID: 35541010 PMCID: PMC9080746 DOI: 10.1039/c8ra03591a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/22/2018] [Indexed: 11/28/2022] Open
Abstract
The detection of Ag+ in the environment is very important to determine the level of pollution from silver complexes, which have caused various human health problems. Herein, an aggregation-induced emission (AIE) chromophore (tetraphenylethane, TPE) attached to a benzimidazole group (tetra-benzimidazole, TBI–TPE) is synthesized and utilized to detect Ag+ in the environment. The strong chelating effect between the benzimidazole group and Ag+ leads to the formation of aggregates, and strong yellow fluorescence signals were observed after adding Ag+ into a TBI–TPE solution. The stoichiometry of the complex of TBI–TPE and Ag+ was established to be 1 : 2 using photochemical and mass spectra measurements. The detection limit of the Ag+ assay is 90 nM with a linear range from 100 nM to 6 μM. This study provides a facile method to determine Ag+ in real environmental samples with satisfactory results. We develop a highly selective TPE-based AIE fluorescent probe containing a benzimidazole group for the detection of Ag+.![]()
Collapse
Affiliation(s)
- Zhixiang Lu
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Yunming Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Shuhan Lu
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Yuan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Xiaolan Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Yu Qin
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Liyan Zheng
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| |
Collapse
|
29
|
Koirala GR, Kim ES, Dhakal R, Chuluunbaatar Z, Jo YH, Kim SS, Kim NY. Microfabricated passive resonator biochip for sensitive radiofrequency detection and characterization of glucose. RSC Adv 2018; 8:33072-33079. [PMID: 35548156 PMCID: PMC9086445 DOI: 10.1039/c8ra04243h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/27/2018] [Indexed: 11/21/2022] Open
Abstract
Passive sensors provide a new route for the characterization of concentration-dependent radiofrequency parameters with high reproducibility in real time. We propose a microfabricated resonator realized using integrated passive device technology for the sensitive detection and characterization of glucose. Experimental results verify the high performance of the proposed biosensor, because radiofrequency parameters such as resonance frequency (from 0.541 to 1.05 GHz) and reflection coefficient (from −34.04 to −24.11 dB) linearly vary in response to deionized water and subsequent iterative measurements of different glucose concentrations (from 50 to 250 mg dL−1). The biosensor has a very low limit of detection of 8.46 mg dL−1, a limit of quantitation of 25.63 mg dL−1, a minimum frequency sensitivity of 29 MHz, and a minimum magnitude sensitivity of 0.22 dB. Moreover, the coupling coefficient consistently decreases with the increasing glucose concentration. We also used the measured radiofrequency parameters to determine the unknown permittivity of glucose samples through mathematical modeling. A decreasing trend in the loss tangent and an increasing trend in the characteristic wave impedance were observed with the increase of glucose concentration. The reproducibility of the sensor was verified through iterative measurements on the same sensor surface and subsequent study of surface morphology. Passive sensors provide a new route for the characterization of concentration-dependent radiofrequency parameters with high reproducibility in real time.![]()
Collapse
Affiliation(s)
- Gyan Raj Koirala
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| | - Eun-Seong Kim
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| | - Rajendra Dhakal
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| | - Zorigt Chuluunbaatar
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| | - Yong Hwa Jo
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| | - Sung-Soo Kim
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| | - Nam-Young Kim
- RFIC Fusion Laboratory
- Department of Electronic Engineering
- Kwangwoon University
- Seoul
- South Korea
| |
Collapse
|
30
|
Niu Y, Stadler FJ, He T, Zhang X, Yu Y, Chen S. Smart multifunctional polyurethane microcapsules for the quick release of anticancer drugs in BGC 823 and HeLa tumor cells. J Mater Chem B 2017; 5:9477-9481. [PMID: 32264561 DOI: 10.1039/c7tb02570j] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Smart multifunctional drug delivery systems (DDSs) based on cytophilic fluorescent polyurethane copolymer microcapsules with high tumor cell internalization, triggered release, quick cancer cell death and real time fluorescent monitoring abilities is developed as a facile and versatile approach for precision cancer therapy.
Collapse
Affiliation(s)
- Yuqing Niu
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | | | | | | | | | | |
Collapse
|
31
|
Li S, Zhang D, Sheng S, Sun H. Targeting thyroid cancer with acid-triggered release of doxorubicin from silicon dioxide nanoparticles. Int J Nanomedicine 2017; 12:5993-6003. [PMID: 28860762 PMCID: PMC5573063 DOI: 10.2147/ijn.s137335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Currently, therapy for thyroid cancer mainly involves surgery and radioiodine therapy. However, chemotherapy can be used in advanced and aggressive thyroid cancer that cannot be treated by other options. Nevertheless, a major obstacle to the successful treatment of thyroid cancer is the delivery of drugs to the thyroid gland. Here, we present an example of the construction of silicon dioxide nanoparticles with thyroid–stimulating-hormone receptor-targeting ligand that can specifically target the thyroid cancer. Doxorubicin nanoparticles can be triggered by acid to release the drug payload for cancer therapy. These nanoparticles shrink the tumor size in vivo with less toxic side effects. This research paves the way toward effective chemotherapy for thyroid cancer.
Collapse
Affiliation(s)
| | | | - Shihou Sheng
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Chang Chun, People's Republic of China
| | - Hui Sun
- Department of Thyroid Surgery
| |
Collapse
|
32
|
Zhang L, Casey B, Galanakis DK, Marmorat C, Skoog S, Vorvolakos K, Simon M, Rafailovich MH. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion. Acta Biomater 2017; 54:164-174. [PMID: 28263863 DOI: 10.1016/j.actbio.2017.03.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/15/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
Abstract
Thrombosis is a clear risk when any foreign material is in contact with the bloodstream. Here we propose an immunohistological stain-based model for non-enzymatic clot formation that enables a facile screen for the thrombogenicity of blood-contacting materials. We exposed polymers with different surface chemistries to protease-free human fibrinogen. We observed that on hydrophilic surfaces, fibrinogen is adsorbed via αC regions, while the γ400-411 platelet-binding dodecapeptide on the D region becomes exposed, and fibrinogen fibers do not form. In contrast, fibrinogen is adsorbed on hydrophobic surfaces via the relatively hydrophobic D and E regions, exposing the αC regions while rendering the γ400-411 inaccessible. Fibrinogen adsorbed on hydrophobic surfaces is thus able to recruit other fibrinogen molecules through αC regions and polymerize into large fibrinogen fibers, similar to those formed in vivo in the presence of thrombin. Moreover, the γ400-411 is available only on the large fibers not elsewhere throughout the hydrophobic surface after fibrinogen fiber formation. When these surfaces were exposed to gel-sieved platelets or platelet rich plasma, a uniform monolayer of platelets, which appeared to be activated, was observed on the hydrophilic surfaces. In contrast, large agglomerates of platelets were clustered on fibers on the hydrophobic surfaces, resembling small nucleating thrombi. Endothelial cells were also able to adhere to the monomeric coating of fibrinogen on hydrophobic surfaces. These observations reveal that the extent and type of fibrinogen adsorption, as well as the propensity of adsorbed fibrinogen to bind platelets, may be modulated by careful selection of surface chemistry. STATEMENTS OF SIGNIFICANCE Thrombosis is a well-known side effect of the introduction of foreign materials into the bloodstream, as might exist in medical devices including but not limited to stents, valves, and intravascular catheters. Despite many reported studies, the body's response to foreign materials in contact with the blood remains poorly understood. Current preventive methods consist of drug eluting coatings on the devices or the systemic administration of standard anticoagulants. Here we present a potential mechanism by which surface chemistry can affects fibrinogen conformation and thus affects platelet adhesion and consequently thrombus formation. Our findings suggest a possible coating which enables endothelial cell adhesion while preventing platelet adhesion.
Collapse
|
33
|
Sheng S, Chen Y, Zhang T, Ding M, Wu Y, Shen Z, Han G, Wang X. The assembly of small molecule conjugate amphiphiles into a precise nanomedicine for colon cancer. RSC Adv 2017. [DOI: 10.1039/c7ra07512j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A small molecule conjugate based on a traditional Chinese medicine cantharidin (CTR), which is an anhydride, and the anticancer drug camptothecin (CPT) was designed.
Collapse
Affiliation(s)
- Shihou Sheng
- Department of Gastrointestinal Colorectal and Anal Surgery
- China-Japan Union Hospital of Jilin University
- Chang Chun 130000
- China
| | - Yahong Chen
- Department of Gastrointestinal Colorectal and Anal Surgery
- China-Japan Union Hospital of Jilin University
- Chang Chun 130000
- China
| | - Tao Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery
- China-Japan Union Hospital of Jilin University
- Chang Chun 130000
- China
| | - Meng Ding
- Department of Gastroenterology
- China-Japan Union Hospital of Jilin University
- Chang Chun 130000
- China
| | - Yuanyu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery
- China-Japan Union Hospital of Jilin University
- Chang Chun 130000
- China
| | - Zhen Shen
- Department of Gastrointestinal Colorectal and Anal Surgery
- China-Japan Union Hospital of Jilin University
- Chang Chun 130000
- China
| | - Gang Han
- Department of Gastrointestinal Surgery
- The Second Hospital of Jilin University
- Chang Chun
- China
| | - Xu Wang
- Department of Gastrointestinal Colorectal Surgery
- The First Hospital of Jilin University
- China
| |
Collapse
|
34
|
Li J, Yu Y, Myungwoong K, Li K, Mikhail J, Zhang L, Chang CC, Gersappe D, Simon M, Ober C, Rafailovich M. Manipulation of cell adhesion and dynamics using RGD functionalized polymers. J Mater Chem B 2017; 5:6307-6316. [DOI: 10.1039/c7tb01209h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An ABA tri-block co-polymer with RGD peptide sequences inserted were synthesized. Cell adhesion can be controlled by polymer configuration changing via electrical field.
Collapse
Affiliation(s)
- Juyi Li
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Yingjie Yu
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Kim Myungwoong
- Department of Materials Science & Engineering
- Cornell University
- Ithaca
- USA
| | - Kao Li
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| | - John Mikhail
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Linxi Zhang
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| | | | - Dilip Gersappe
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Marcia Simon
- Department of Medicine
- Stony Brook University School of Medicine
- Stony Brook
- USA
| | - Christopher Ober
- Department of Materials Science & Engineering
- Cornell University
- Ithaca
- USA
| | - Miriam Rafailovich
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| |
Collapse
|