1
|
Du J, Kong Y, Wen Y, Shen E, Xing H. HUH Endonuclease: A Sequence-specific Fusion Protein Tag for Precise DNA-Protein Conjugation. Bioorg Chem 2024; 144:107118. [PMID: 38330720 DOI: 10.1016/j.bioorg.2024.107118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
Synthetic DNA-protein conjugates have found widespread applications in diagnostics and therapeutics, prompting a growing interest in developing chemical biology methodologies for the precise and site-specific preparation of covalent DNA-protein conjugates. In this review article, we concentrate on techniques to achieve precise control over the structural and site-specific aspects of DNA-protein conjugates. We summarize conventional methods involving unnatural amino acids and self-labeling proteins, accompanied by a discussion of their potential limitations. Our primary focus is on introducing HUH endonuclease as a novel generation of fusion protein tags for DNA-protein conjugate preparation. The detailed conjugation mechanisms and structures of representative endonucleases are surveyed, showcasing their advantages as fusion protein tag in sequence selectivity, biological orthogonality, and no requirement for DNA modification. Additionally, we present the burgeoning applications of HUH-tag-based DNA-protein conjugates in protein assembly, biosensing, and gene editing. Furthermore, we delve into the future research directions of the HUH-tag, highlighting its significant potential for applications in the biomedical and DNA nanotechnology fields.
Collapse
Affiliation(s)
- Jiajun Du
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Yujian Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Enxi Shen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China.
| |
Collapse
|
2
|
Beutel J, Tannig P, Di Vincenzo R, Schumacher T, Überla K, Eichler J. Bind&Bite: covalently stabilized heterodimeric coiled-coil peptides for the site-selective, cysteine-free chemical modification of proteins. RSC Chem Biol 2023; 4:794-803. [PMID: 37799587 PMCID: PMC10549240 DOI: 10.1039/d3cb00122a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 10/07/2023] Open
Abstract
Ensuring site-selectivity in covalent chemical modification of proteins is one of the major challenges in chemical biology and related biomedical disciplines. Most current strategies either utilize the selectivity of proteases, or are based on reactions involving the thiol groups of cysteine residues. We have modified a pair of heterodimeric coiled-coil peptides to enable the selective covalent stabilization of the dimer without using enzymes or cysteine moieties. Fusion of one peptide to the protein of interest, in combination with linking the desired chemical modification to the complementary peptide, facilitates stable, regio-selective attachment of the chemical moiety to the protein, through the formation of the covalently stabilized coiled-coil. This ligation method, which is based on the formation of isoeptide and squaramide bonds, respectively, between the coiled-coil peptides, was successfully used to selectively modify the HIV-1 envelope glycoprotein. Covalent stabilization of the coiled-coil also facilitated truncation of the peptides by one heptad sequence. Furthermore, selective addressing of individual positions of the peptides enabled the generation of mutually selective coiled-coils. The established method, termed Bind&Bite, can be expected to be beneficial for a range of biotechnological and biomedical applications, in which chemical moieties need to be stably attached to proteins in a site-selective fashion.
Collapse
Affiliation(s)
- Jannis Beutel
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg (FAU) Erlangen Germany
- Institut Virion-Serion GmbH Würzburg Germany
| | - Pierre Tannig
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg (FAU) Erlangen Germany
| | - Riccardo Di Vincenzo
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg (FAU) Erlangen Germany
| | | | - Klaus Überla
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg (FAU) Erlangen Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg (FAU) Erlangen Germany
| |
Collapse
|
3
|
Xiao X, Zhen S. Recent advances in fluorescence anisotropy/polarization signal amplification. RSC Adv 2022; 12:6364-6376. [PMID: 35424604 PMCID: PMC8982260 DOI: 10.1039/d2ra00058j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/25/2022] Open
Abstract
Fluorescence anisotropy/polarization is an attractive and versatile technique based on molecular rotation in biochemical/biophysical systems. Traditional fluorescence anisotropy/polarization assays showed relatively low sensitivity for molecule detection, because widespread molecular masses are too small to produce detectable changes in fluorescence anisotropy/polarization value. In this review, we discuss in detail how the potential of fluorescence anisotropy/polarization signal approach considerably expanded through the implementation of mass amplification, recycle the target amplification, fluorescence probes structure-switching amplification, resonance energy transfer amplification, and provide perspectives at future directions and applications.
Collapse
Affiliation(s)
- Xue Xiao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University 610041 Chengdu PR China
| | - Shujun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University 400715 Chongqing PR China
| |
Collapse
|
4
|
Hendrickson OD, Taranova NA, Zherdev AV, Dzantiev BB, Eremin SA. Fluorescence Polarization-Based Bioassays: New Horizons. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7132. [PMID: 33322750 PMCID: PMC7764623 DOI: 10.3390/s20247132] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Fluorescence polarization holds considerable promise for bioanalytical systems because it allows the detection of selective interactions in real time and a choice of fluorophores, the detection of which the biosample matrix does not influence; thus, their choice simplifies and accelerates the preparation of samples. For decades, these possibilities were successfully applied in fluorescence polarization immunoassays based on differences in the polarization of fluorophore emissions excited by plane-polarized light, whether in a free state or as part of an immune complex. However, the results of recent studies demonstrate the efficacy of fluorescence polarization as a detected signal in many bioanalytical methods. This review summarizes and comparatively characterizes these developments. It considers the integration of fluorescence polarization with the use of alternative receptor molecules and various fluorophores; different schemes for the formation of detectable complexes and the amplification of the signals generated by them. New techniques for the detection of metal ions, nucleic acids, and enzymatic reactions based on fluorescence polarization are also considered.
Collapse
Affiliation(s)
- Olga D. Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Nadezhda A. Taranova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Sergei A. Eremin
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
- Department of Chemical Enzymology, Chemical Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
5
|
Zhao D, Kong Y, Zhao S, Xing H. Engineering Functional DNA–Protein Conjugates for Biosensing, Biomedical, and Nanoassembly Applications. Top Curr Chem (Cham) 2020; 378:41. [DOI: 10.1007/s41061-020-00305-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
|
6
|
Lopez A, Liu J. Fluorescence Polarization for Probing DNA Adsorption by Nanomaterials and Fluorophore/DNA Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9954-9961. [PMID: 31271290 DOI: 10.1021/acs.langmuir.9b01678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorescence polarization (FP) is attractive for measuring binding interactions and has been recently used to study DNA adsorption on nanomaterials. Since most nanomaterials are strong fluorescence quenchers, correlations among adsorption efficiency, quenching efficiency, and FP need to be interpreted carefully. In this work, carboxyfluorescein (FAM)-labeled DNA oligonucleotides were studied under various quenching conditions. First, quenching was induced by lowering the pH, taking advantage of the fact that FAM is almost nonfluorescent at a pH below 4. Strong interactions were observed between the FAM label and polyadenine DNA, as judged by the increased FP at low pH, while FAM-labeled polythymine DNA was less affected by the pH. Comparisons were also performed with FAM-labeled poly(ethylene glycol) and bovine serum albumin. An equation was derived to calculate the effect of fluorescence quenching and DNA adsorption by nanomaterials. For strongly quenching nanomaterials, such as graphene oxide, DNA adsorption alone does not change the measured FP. Light scattering and weak fluorescence from graphene oxide increase FP in these cases. For comparison, a strongly adsorbing but weak quenching material, Y2O3, was also studied and the result was consistent with a normal binding reaction. Overall, FP is a powerful technique for binding and adsorption assays, but quenched samples need to be interpreted with care.
Collapse
Affiliation(s)
- Anand Lopez
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
7
|
Ma P, Ye H, Deng J, Khan IM, Yue L, Wang Z. A fluorescence polarization aptasensor coupled with polymerase chain reaction and streptavidin for chloramphenicol detection. Talanta 2019; 205:120119. [PMID: 31450463 DOI: 10.1016/j.talanta.2019.120119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/23/2019] [Accepted: 07/03/2019] [Indexed: 01/28/2023]
Abstract
The authors describe a fluorescence polarization (FP) aptasensor based on the polymerase chain reaction (PCR) and streptavidin as dual FP amplifiers to detect chloramphenicol residues in food. Briefly, label-free aptamer was incubated with chloramphenicol and the aptamer-chloramphenicol conjugate was used as a template. Subsequently, the FAM-labeled forward primer and biotin-labeled reverse primer were added for PCR to amplify the template and the FAM-labeled primer. The molecular weight of FAM-labeled primer increased rapidly and the corresponding FP also enhanced. Finally, with the introduction of streptavidin, the PCR products and streptavidin were combined with the biotin-streptavidin interactions, resulting in much larger molecular weight. Thus, a dual amplified FP signal was obtained. Under optimal conditions, we were able to achieve a wide linear detection range of 0.001-200 nM. In addition, the designed strategy was applied to detect chloramphenicol in honey samples with high accuracy. Moreover, the strategy can be easily extended to detect other small molecules by changing the corresponding aptamers, which provide a promising avenue for the detection of small molecules by FP.
Collapse
Affiliation(s)
- Pengfei Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, PR China
| | - Hua Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, PR China
| | - Jieying Deng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, PR China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116024, PR China.
| |
Collapse
|
8
|
Fang X, Zheng Y, Duan Y, Liu Y, Zhong W. Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal Chem 2019; 91:482-504. [PMID: 30481456 PMCID: PMC7262998 DOI: 10.1021/acs.analchem.8b05303] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoni Fang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yongzan Zheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yaokai Duan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yang Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
9
|
Fluorescence Sensing Using DNA Aptamers in Cancer Research and Clinical Diagnostics. Cancers (Basel) 2017; 9:cancers9120174. [PMID: 29261171 PMCID: PMC5742822 DOI: 10.3390/cancers9120174] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022] Open
Abstract
Among the various advantages of aptamers over antibodies, remarkable is their ability to tolerate a large number of chemical modifications within their backbone or at the termini without losing significant activity. Indeed, aptamers can be easily equipped with a wide variety of reporter groups or coupled to different carriers, nanoparticles, or other biomolecules, thus producing valuable molecular recognition tools effective for diagnostic and therapeutic purposes. This review reports an updated overview on fluorescent DNA aptamers, designed to recognize significant cancer biomarkers both in soluble or membrane-bound form. In many examples, the aptamer secondary structure switches induced by target recognition are suitably translated in a detectable fluorescent signal using either fluorescently-labelled or label-free aptamers. The fluorescence emission changes, producing an enhancement (“signal-on”) or a quenching (“signal-off”) effect, directly reflect the extent of the binding, thereby allowing for quantitative determination of the target in bioanalytical assays. Furthermore, several aptamers conjugated to fluorescent probes proved to be effective for applications in tumour diagnosis and intraoperative surgery, producing tumour-type specific, non-invasive in vivo imaging tools for cancer pre- and post-treatment assessment.
Collapse
|