1
|
Napoletano S, Battista E, Netti PA, Causa F. MicroLOCK: Highly stable microgel biosensor using locked nucleic acids as bioreceptors for sensitive and selective detection of let-7a. Biosens Bioelectron 2024; 260:116406. [PMID: 38805889 DOI: 10.1016/j.bios.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Chemically modified oligonucleotides can solve biosensing issues for the development of capture probes, antisense, CRISPR/Cas, and siRNA, by enhancing their duplex-forming ability, their stability against enzymatic degradation, and their specificity for targets with high sequence similarity as microRNA families. However, the use of modified oligonucleotides such as locked nucleic acids (LNA) for biosensors is still limited by hurdles in design and from performances on the material interface. Here we developed a fluorogenic biosensor for non-coding RNAs, represented by polymeric PEG microgels conjugated with molecular beacons (MB) modified with locked nucleic acids (MicroLOCK). By 3D modeling and computational analysis, we designed molecular beacons (MB) inserting spot-on LNAs for high specificity among targets with high sequence similarity (95%). MicroLOCK can reversibly detect microRNA targets in a tiny amount of biological sample (2 μL) at 25 °C with a higher sensitivity (LOD 1.3 fM) without any reverse transcription or amplification. MicroLOCK can hybridize the target with fast kinetic (about 30 min), high duplex stability without interferences from the polymer interface, showing high signal-to-noise ratio (up to S/N = 7.3). MicroLOCK also demonstrated excellent resistance to highly nuclease-rich environments, in real samples. These findings represent a great breakthrough for using the LNA in developing low-cost biosensing approaches and can be applied not only for nucleic acids and protein detection but also for real-time imaging and quantitative assessment of gene targeting both in vitro and in vivo.
Collapse
Affiliation(s)
- Sabrina Napoletano
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Edmondo Battista
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
| |
Collapse
|
2
|
Kang X, Zhao C, Chen S, Zhang X, Xue B, Li C, Wang S, Yang X, Xia Z, Xu Y, Huang Y, Qiu Z, Li C, Wang J, Pang J, Shen Z. Development of a cell-free toehold switch for hepatitis A virus type I on-site detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5813-5822. [PMID: 37870419 DOI: 10.1039/d3ay01408h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Picornavirus hepatitis A virus (HAV) is a common cause of hepatitis worldwide. It is spread primarily through contaminated food and water or person-to-person contact. HAV I has been identified as the most common type of human HAV infection. Here, we have developed a cell-free toehold switch sensor for HAV I detection. We screened 10 suitable toehold switch sequences using NUPACK software, and the VP1 gene was used as the target gene. The optimal toehold switch sequence was selected by in vivo expression. The best toehold switch concentration was further found to be 20 nM in a cell-free system. 5 nM trigger RNA activated the toehold switch to generate visible green fluorescence. The minimum detection concentration decreased to 1 pM once combined with NASBA. HAV I trigger RNA could be detected accurately with excellent specificity. In addition, the cell-free toehold switch sensor was verified in HAV I entities. The successful construction of the cell-free toehold switch sensor provided a convenient, rapid, and accurate method for HAV I on-site detection, especially in developing countries, without the involvement of expensive facilities and additional professional operators.
Collapse
Affiliation(s)
- Xiaodan Kang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuting Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shang Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhiqiang Xia
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, 330000, China
| | - Yongchun Xu
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, 330000, China
| | - Yongliang Huang
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, 330000, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chao Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jian Pang
- The Air Force Hospital of Northern Theater People's Liberation Army, Shenyang 110042, China.
| | - Zhiqiang Shen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
3
|
Cao X, Chen C, Zhu Q. Biosensors based on functional nucleic acids and isothermal amplification techniques. Talanta 2023; 253:123977. [PMID: 36201957 DOI: 10.1016/j.talanta.2022.123977] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022]
Abstract
In the past few years, with the in-depth research of functional nucleic acids and isothermal amplification techniques, their applications in the field of biosensing have attracted great interest. Since functional nucleic acids have excellent flexibility and convenience in their structural design, they have significant advantages as recognition elements in biosensing. At the same time, isothermal amplification techniques have higher amplification efficiency, so the combination of functional nucleic acids and isothermal amplification techniques can greatly promote the widespread application of biosensors. For the purpose of further improving the performance of biosensors, this review introduces several widely used functional nucleic acids and isothermal amplification techniques, as well as their classification, basic principles, application characteristics, and summarizes their important applications in the field of biosensing. We hope to provide some references for the design and construction of new tactics to enhance the detection sensitivity and detection range of biosensing.
Collapse
Affiliation(s)
- Xiuen Cao
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
5
|
Ligong Z, Hongxia L, Junjie L, Lu Z, Bie X. A duplex real-time NASBA assay targeting serotype-specific gene for rapid detection of viable S. enterica serovar Paratyphi C in retail foods of animal origin. Can J Microbiol 2022; 68:259-268. [PMID: 35025610 DOI: 10.1139/cjm-2021-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salmonella enterica serovars Paratyphi C is highly adapted to humans and can cause a typhoid-like disease with high mortality rates. In this study, three serovar-specific genes were determined for S. Paratyphi C, SPC_0871,SPC_0872, and SPC_0908, by comparative genomics method. Based on SPC_0908 and xcd gene for testing Salmonella spp., we have developed a duplex real-time nucleic acid sequence-based amplification (real-time NASBA) with molecular beacon approach for simultaneous detection of viable cells of Salmonella spp. and serotype Paratyphi C. The test selectively and consistently detected 53 Salmonella spp. (representing 31 serotypes) and 18 non-Salmonella strains. Additionally, the method showed high resistance to interference by natural background flora in pork and chicken samples. The sensitivity of the established approach was determined to be 4.89 CFU/25 g in artificially contaminated pork and chicken samples after pre-enrichment. We propose this NASBA-based protocol as a potential detection method for Salmonella spp. and serotype Paratyphi C in food of animal origin.
Collapse
Affiliation(s)
- Zhai Ligong
- Anhui Science and Technology University, 177515, Bengbu, China, 233100;
| | - Liu Hongxia
- Ministry of Agriculture of China, Nanjing, China;
| | - Li Junjie
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Zhaoxin Lu
- Colleges of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| | - Xiaomei Bie
- Colleges of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| |
Collapse
|
6
|
Glökler J, Lim TS, Ida J, Frohme M. Isothermal amplifications - a comprehensive review on current methods. Crit Rev Biochem Mol Biol 2021; 56:543-586. [PMID: 34263688 DOI: 10.1080/10409238.2021.1937927] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The introduction of nucleic acid amplification techniques has revolutionized the field of medical diagnostics in the last decade. The advent of PCR catalyzed the increasing application of DNA, not just for molecular cloning but also for molecular based diagnostics. Since the introduction of PCR, a deeper understanding of molecular mechanisms and enzymes involved in DNA/RNA replication has spurred the development of novel methods devoid of temperature cycling. Isothermal amplification methods have since been introduced utilizing different mechanisms, enzymes, and conditions. The ease with which isothermal amplification methods have allowed nucleic acid amplification to be carried out has had a profound impact on the way molecular diagnostics are being designed after the turn of the millennium. With all the advantages isothermal amplification brings, the issues or complications surrounding each method are heterogeneous making it difficult to identify the best approach for an end-user. This review pays special attention to the various isothermal amplification methods by classifying them based on the mechanistic characteristics which include reaction formats, amplification information, promoter, strand break, and refolding mechanisms. We would also compare the efficiencies and usefulness of each method while highlighting the potential applications and detection methods involved. This review will serve as an overall outlook on the journey and development of isothermal amplification methods as a whole.
Collapse
Affiliation(s)
- Jörn Glökler
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Jeunice Ida
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Marcus Frohme
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| |
Collapse
|
7
|
Cao M, Sun Q, Zhang X, Ma Y, Wang J. Detection and differentiation of respiratory syncytial virus subgroups A and B with colorimetric toehold switch sensors in a paper-based cell-free system. Biosens Bioelectron 2021; 182:113173. [PMID: 33773383 DOI: 10.1016/j.bios.2021.113173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
Respiratory syncytial virus (RSV) infection is the most common clinical infectious disease threatening the safety of human life. Herein, we provided a sensitive and specific method for detection and differentiation of RSV subgroups A (RSVA) and B (RSVB) with colorimetric toehold switch sensors in a paper-based cell-free system. In this method, we applied the toehold switch, an RNA-based riboswitch, to regulate the translation level of β-galactosidase (lacZ) gene. In the presence of target trigger RNA, the toehold switch sensor was activated and the expressed LacZ hydrolyzed chromogenic substrates to produce a colorimetric result that can be observed directly with the naked eye in a cell-free system. In addition, nucleic acid sequence-based amplification (NASBA) was used to improve the sensitivity by amplifying target trigger RNAs. Under optimal conditions, our method produced a visible result for the detection of RSVA and RSVB with the detection limit of 52 aM and 91 aM, respectively. The cross-reaction of this method was validated with other closely related respiratory viruses, including human coronavirus HKU1 (HCoV-HKU1), and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Furthermore, we used the paper-based carrier material that allows stable storage of our detection elements and rapid detection outside laboratory. In conclusion, this method can sensitively and specifically differentiate RSVA and RSVB and generate a visible colorimetric result without specialized operators and sophisticated equipment. Based on these advantages above, this method serves as a simple and portable detector in resource-poor areas and point-of-care testing (POCT) scenarios.
Collapse
Affiliation(s)
- Mengcen Cao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Qiuli Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Dronina J, Bubniene US, Ramanavicius A. The application of DNA polymerases and Cas9 as representative of DNA-modifying enzymes group in DNA sensor design (review). Biosens Bioelectron 2020; 175:112867. [PMID: 33303323 DOI: 10.1016/j.bios.2020.112867] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022]
Abstract
Rapid detection of nucleic acids (DNA or RNA) by inexpensive, selective, accurate, and highly sensitive methods is very important for biosensors. DNA-sensors based on DNA-modifying enzymes for fast determination and monitoring of pathogenic (Zika, Dengue, SARS-Cov-2 (inducer of COVID-19), human papillomavirus, HIV, etc.) viruses and diagnosis of virus-induced diseases is a key factor of this overview. Recently, DNA-modifying enzymes (Taq DNA polymerase, Phi29 DNA polymerase) have been widely used for the diagnosis of virus or pathogenic disease by gold standard (PCR, qPCR, RT-qPCR) methods, therefore, alternative methods have been reviewed. The main mechanisms of DNA metabolism (replication cycle, amplification) and the genomeediting tool CRISPR-Cas9 are purposefully discussed in order to address strategic possibility to design DNA-sensors based on immobilized DNA-enzymes. However, the immobilization of biologically active proteins on a gold carrier technique with the ability to detect viral or bacterial nucleic acids is individual for each DNA-modifying enzyme group, due to a different number of active sites, C and N terminal locations and arrangement, therefore, individual protocols based on the 'masking' of active sites should be elaborated for each enzyme.
Collapse
Affiliation(s)
- Julija Dronina
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, LT-03225, Vilnius, Lithuania
| | - Urte Samukaite Bubniene
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, LT-03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, LT-03225, Vilnius, Lithuania.
| |
Collapse
|
9
|
Nascimento Junior JAC, Santos AM, Oliveira AMS, Guimarães AG, Quintans-Júnior LJ, Coutinho HDM, Martins N, Borges LP, Serafini MR. Trends in MERS-CoV, SARS-CoV, and SARS-CoV-2 (COVID-19) Diagnosis Strategies: A Patent Review. Front Public Health 2020; 8:563095. [PMID: 33194964 PMCID: PMC7653175 DOI: 10.3389/fpubh.2020.563095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of a new coronavirus (SARS-CoV-2) outbreak represents a challenge for the diagnostic laboratories responsible for developing test kits to identify those infected with SARS-CoV-2. Methods with rapid and accurate detection are essential to control the sources of infection, to prevent the spread of the disease and to assist decision-making by public health managers. Currently, there is a wide variety of tests available with different detection methodologies, levels of specificity and sensitivity, detection time, and with an extensive range of prices. This review therefore aimed to conduct a patent search in relation to tests for the detection of SARS-CoV, MERS-CoV, and SARS-CoV-2. The greatest number of patents identified in the search were registered between 2003 and 2011, being mainly deposited by China, the Republic of Korea, and the United States. Most of the patents used the existing RT-PCR, ELISA, and isothermal amplification methods to develop simple, sensitive, precise, easy to use, low-cost tests that reduced false-negative or false-positive results. The findings of this patent search show that an increasing number of materials and diagnostic tests for the coronavirus are being produced to identify infected individuals and combat the growth of the current pandemic; however, there is still a question in relation to the reliability of the results of these tests.
Collapse
Affiliation(s)
- José Adão Carvalho Nascimento Junior
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Brazil.,Posgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristovão, Brazil
| | | | | | - Adriana Gibara Guimarães
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Brazil.,Posgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristovão, Brazil
| | - Lucindo José Quintans-Júnior
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Brazil.,Posgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristovão, Brazil
| | | | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | | | - Mairim Russo Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Brazil.,Posgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristovão, Brazil
| |
Collapse
|
10
|
Nguyen HV, Nguyen VD, Liu F, Seo TS. An Integrated Smartphone-Based Genetic Analyzer for Qualitative and Quantitative Pathogen Detection. ACS OMEGA 2020; 5:22208-22214. [PMID: 32923778 PMCID: PMC7482303 DOI: 10.1021/acsomega.0c02317] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 05/04/2023]
Abstract
The use of the smartphone is an ideal platform to realize the future point-of-care (POC) diagnostic system. Herein, we propose an integrated smartphone-based genetic analyzer. It consists of a smartphone and an integrated genetic analysis unit (i-Gene), in which the power of the smartphone was utilized for heating the gene amplification reaction, and the camera function was used for imaging the colorimetric change of the reaction for quantitative and multiplex foodborne pathogens. The housing of i-Gene was fabricated by using a 3D printer, which was equipped with a macro lens, white LEDs, a disposable microfluidic chip for loop-mediated isothermal amplification (LAMP), a thin-film heater, and a power booster. The i-Gene was installed on the iPhone in alignment with a camera. The LAMP mixture for Eriochrome Black T (EBT) colorimetric detection was injected into the LAMP chip to identify Escherichia coli O157:H7, Salmonella typhimurium, and Vibrio parahaemolyticus. The proportional-integral-derivative controller-embedded film heater was powered by a 5.0 V power bank to maintain 63 °C for the LAMP reaction. When the LAMP proceeded, the color was changed from violet to blue, which was real-time monitored by the smartphone complementary metal oxide semiconductor camera. The images were transported to the desktop computer via Wi-Fi. The quantitative LAMP profiles were obtained by plotting the ratio of green/red intensity versus the reaction time. We could identify E. coli O157:H7 with a limit of detection of 101 copies/μL within 60 min. Our proposed smartphone-based genetic analyzer offers a portable, simple, rapid, and cost-effective POC platform for future diagnostic markets.
Collapse
Affiliation(s)
- Hau Van Nguyen
- Kyung
Hee University - Global Campus, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 446-701, South Korea
| | - Van Dan Nguyen
- Kyung
Hee University - Global Campus, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 446-701, South Korea
| | - Fei Liu
- School
of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Xueyugn Road #270, Wenzhou, Zhejiang 325035, P.R. China
| | - Tae Seok Seo
- Kyung
Hee University - Global Campus, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
11
|
Bodulev OL, Sakharov IY. Isothermal Nucleic Acid Amplification Techniques and Their Use in Bioanalysis. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:147-166. [PMID: 32093592 PMCID: PMC7223333 DOI: 10.1134/s0006297920020030] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
Recently, there has been a rapid progress in the development of techniques for isothermal amplification of nucleic acids as an alternative to polymerase chain reaction (PCR). The advantage of these methods is that the nucleic acids amplification can be carried out at constant temperature, unlike PCR, which requires cyclic temperature changes. Moreover, isothermal amplification can be conducted directly in living cells. This review describes the principles of isothermal amplification techniques and demonstrates their high efficiency in designing new highly sensitive detection methods of nucleic acids and enzymes involved in their modifications. The data on successful application of isothermal amplification methods for the analysis of cells and biomolecules with the use of DNA/RNA aptamers are presented.
Collapse
Affiliation(s)
- O L Bodulev
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia
| | - I Yu Sakharov
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| |
Collapse
|
12
|
Wu X, Teng F, Libera M. Functional Changes during Electron-Beam Lithography of Biotinylated Poly(ethylene glycol) Thin Films. ACS Macro Lett 2019; 8:1252-1256. [PMID: 35651171 DOI: 10.1021/acsmacrolett.9b00585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast to photolithography where particular wavelengths of light can couple to specific photochemistries, electron-beam lithography can drive competing chemistries. To separate surface-grafting, cross-linking, and chemical functionality, we studied the effects of 2 keV electrons on thin films of poly(ethylene glycol) end-functionalized with hydroxyls (PEG-OH) or biotins (PEG-B). Similarities in the dose-dependent thickness changes of the patterned PEGs indicate that surface grafting and cross-linking primarily involve the ethylene oxide main chain. While higher doses create thicker patterns with more biotin, the concurrent increase in thiol reactivity indicates that cross-linking competes with biotin degradation. The dose window for optimal e-beam patterning of biotinylated PEG is very narrow. Biotin is entirely consumed at higher doses. Its modified functionality is reactive with 5-((2-(and-3)-S-(acetylmercapto) succinoyl) amino) (SAMSA). This effect creates a dose-dependent orthogonal functionality that can be patterned from a single precursor thin film.
Collapse
Affiliation(s)
- Xinpei Wu
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Feiyue Teng
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Matthew Libera
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
13
|
Caputo TM, Battista E, Netti PA, Causa F. Supramolecular Microgels with Molecular Beacons at the Interface for Ultrasensitive, Amplification-Free, and SNP-Selective miRNA Fluorescence Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17147-17156. [PMID: 31021070 DOI: 10.1021/acsami.8b22635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, a supramolecular structure with femtomolar biorecognition properties is proposed for use in analytical devices. It is obtained by an innovative interface between synthetic hydrogel polymers and molecular beacon (mb) probes. Supramolecularly structured microgels are synthetized with a core-shell architecture with specific dyes polymerized in a desired compartment. Mb probes are opportunely conjugated at the microgel interface so that their recognition mechanism is preserved and their spatial distribution is optimized to avoid crowding effects. The miR-21, a microRNA involved in various biological processes and usually used as a biomarker in early cancer diagnosis, has been selected as the target. The results demonstrate that by tuning the spatial distribution of molecular probes immobilized on the microgel and/or the amount of microgels, the assay shows scalable sensitivity reaching a limit of detection down to about 10 fM, without amplification steps and with detection time as short as 1 h. The assay results specific toward single mutated targets, and it is stable in the presence of high-interfering oligonucleotides concentrations. The miRNA target is also detected in human serum with performances similar to those observed in PBS buffer because of microgel antifouling properties without the need of any surface treatment. All tests were performed in a low sample volume (20 μL). As a result, mb-microgel represents an innovative biosensor to precisely quantify microRNAs in a direct (mix&read), scalable, and selective way. Such an approach paves the way for creating innovative biosensing interfaces with other probes, such as hairpins, aptamers, and PNA.
Collapse
Affiliation(s)
- Tania M Caputo
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
| | - Edmondo Battista
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
- InterdisciplinaryResearch Centre on Biomaterials (CRIB) , Università degli Studi di Napoli "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
- InterdisciplinaryResearch Centre on Biomaterials (CRIB) , Università degli Studi di Napoli "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI) , University "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
| | - Filippo Causa
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
- InterdisciplinaryResearch Centre on Biomaterials (CRIB) , Università degli Studi di Napoli "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI) , University "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
| |
Collapse
|
14
|
Teng F, Libera M. Microlens Enhancement of Surface-Tethered Molecular Beacons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14969-14974. [PMID: 30277788 DOI: 10.1021/acs.langmuir.8b02204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The tethering of molecular beacon oligonucleotide detection probes to surface-patterned poly(ethylene glycol) (PEG) microgels has enabled the integration of molecular beacons into a microarray format. The microgels not only localize the probes to specific surface positions but also maintain them in a waterlike environment. Here we extend the concept of microgel tethering to include dielectric microlenses. We show that streptavidin-functionalized polystyrene microspheres (3 μm diameter) can be colocalized with molecular beacons using biotinylated PEG gels in patterns ranging from pseudocontinuous microgel pads with lateral dimensions on the order of tens of micrometers to individual microgels with lateral dimensions on the order of 400-500 nm. We use a simplex assay based on Influenza A detection to study the lensing behavior. The microspheres increase the effective numerical aperture of the collection optics, and we find that a tethered microsphere increases the peak intensity collected from hybridized beacons between 1.5 and 10 times depending on the specific pattern size and areal density of microgels. The highest signal increase occurs when a single microsphere is tethered to a single isolated microgel. The tethering is highly self-directed and occurs in the individual-microgel case only when the microgel is close to the optic axis of the microsphere. This alignment minimizes spherical aberration and maximizes coupling of emitted fluorescent intensity into the collection optics.
Collapse
Affiliation(s)
- Feiyue Teng
- Department of Chemical Engineering and Materials Science , Stevens Institute of Technology , Hoboken , New Jersey 07030 , United States
| | - Matthew Libera
- Department of Chemical Engineering and Materials Science , Stevens Institute of Technology , Hoboken , New Jersey 07030 , United States
| |
Collapse
|
15
|
Ma Y, Teng F, Libera M. Solid-Phase Nucleic Acid Sequence-Based Amplification and Length-Scale Effects during RNA Amplification. Anal Chem 2018; 90:6532-6539. [PMID: 29653055 DOI: 10.1021/acs.analchem.8b00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-phase oligonucleotide amplification is of interest because of possible applications to next-generation sequencing, multiplexed microarray-based detection, and cell-free synthetic biology. Its efficiency is, however, less than that of traditional liquid-phase amplification involving unconstrained primers and enzymes, and understanding how to optimize the solid-phase amplification process remains challenging. Here, we demonstrate the concept of solid-phase nucleic acid sequence-based amplification (SP-NASBA) and use it to study the effect of tethering density on amplification efficiency. SP-NASBA involves two enzymes, avian myeloblastosis virus reverse transcriptase (AMV-RT) and RNase H, to convert tethered forward and reverse primers into tethered double-stranded DNA (ds-DNA) bridges from which RNA- amplicons can be generated by a third enzyme, T7 RNA polymerase. We create microgels on silicon surfaces using electron-beam patterning of thin-film blends of hydroxyl-terminated and biotin-terminated poly(ethylene glycol) (PEG-OH, PEG-B). The tethering density is linearly related to the PEG-B concentration, and biotinylated primers and molecular beacon detection probes are tethered to streptavidin-activated microgels. While SP-NASBA is very efficient at low tethering densities, the efficiency decreases dramatically with increasing tethering density due to three effects: (a) a reduced hybridization efficiency of tethered molecular beacon detection probes; (b) a decrease in T7 RNA polymerase efficiency;
Collapse
Affiliation(s)
- Youlong Ma
- Department of Chemical Engineering and Materials Science , Stevens Institute of Technology , Hoboken , New Jersey 07030 , United States
| | - Feiyue Teng
- Department of Chemical Engineering and Materials Science , Stevens Institute of Technology , Hoboken , New Jersey 07030 , United States
| | - Matthew Libera
- Department of Chemical Engineering and Materials Science , Stevens Institute of Technology , Hoboken , New Jersey 07030 , United States
| |
Collapse
|
16
|
Ma C, Jing H, Zhang P, Han L, Zhang M, Wang F, Niu S, Shi C. An ultrafast one-step assay for the visual detection of RNA virus. Chem Commun (Camb) 2018. [PMID: 29517791 DOI: 10.1039/c8cc00150b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A one-step, rapid, and visual method was developed for the detection of RNA viruses and a few copies of the Zika RNA virus were directly detected within 25 min by naked-eye observation. This method will prove to be promising for point-of-care testing in out-of-lab and inconvenient settings.
Collapse
Affiliation(s)
- Cuiping Ma
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hao Jing
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Pansong Zhang
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lingzhi Han
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Meiling Zhang
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Fuxin Wang
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shuyan Niu
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chao Shi
- College of Life Sciences, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|