1
|
Zheng D, Kashif MF, Piscopo L, Collard L, Ciracì C, De Vittorio M, Pisanello F. Tunable Nanoislands Decorated Tapered Optical Fibers Reveal Concurrent Contributions in Through-Fiber SERS Detection. ACS PHOTONICS 2024; 11:3774-3783. [PMID: 39310299 PMCID: PMC11413926 DOI: 10.1021/acsphotonics.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024]
Abstract
Creating plasmonic nanoparticles on a tapered optical fiber (TF) tip enables a remote surface-enhanced Raman scattering (SERS) sensing probe, ideal for challenging sampling scenarios like biological tissues, site-specific cells, on-site environmental monitoring, and deep brain structures. However, nanoparticle patterns fabricated from current bottom-up methods are mostly random, making geometry control difficult. Uneven statistical distribution, clustering, and multilayer deposition introduce uncertainty in correlating device performance with morphology. Ultimately, this limits the design of the best-performance remote SERS sensing probe. Here we employ a tunable solid-state dewetting method to create densely packed monolayer Au nanoislands with varied geometric parameters in direct contact with the silica TF surface. These patterns exhibit analyzable nanoparticle sizes, densities, and uniform distribution across the entire taper surface, enabling a systematic investigation of particle size, density, and analyte effects on the SERS performance of the through-fiber detection system. The study is focused on the SERS response of a widely employed benchmark molecule, rhodamine 6G (R6G), and serotonin, a highly relevant neurotransmitter for the neuroscience field. The numerical simulations and limit of detection (LOD) experiments on R6G show that the increase of the total near-field enhancement volume promotes the SERS sensitivity of the probe. However, we observed a different behavior for serotonin linked to its interaction with the nanoparticle's surface. The obtained LOD is as low as 10-7 M, a value not achieved so far in a through-fiber detection scheme. Therefore, our work offers a strategy to design nanoparticle-based remote SERS sensing probes and provides new clues to discover and understand intricate plasmonic-driven chemical reactions.
Collapse
Affiliation(s)
- Di Zheng
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- State
Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Fayyaz Kashif
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Linda Piscopo
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- Dipartimento
di Ingegneria Dell’Innovazione, Università
del Salento, 73100 Lecce, Italy
| | - Liam Collard
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| | - Cristian Ciracì
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Massimo De Vittorio
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- Dipartimento
di Ingegneria Dell’Innovazione, Università
del Salento, 73100 Lecce, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| | - Ferruccio Pisanello
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| |
Collapse
|
2
|
Zheng D, Pisano F, Collard L, Balena A, Pisanello M, Spagnolo B, Mach-Batlle R, Tantussi F, Carbone L, De Angelis F, Valiente M, de la Prida LM, Ciracì C, De Vittorio M, Pisanello F. Toward Plasmonic Neural Probes: SERS Detection of Neurotransmitters through Gold-Nanoislands-Decorated Tapered Optical Fibers with Sub-10 nm Gaps. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2200902. [PMID: 36479741 DOI: 10.1002/adma.202200902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Integration of plasmonic nanostructures with fiber-optics-based neural probes enables label-free detection of molecular fingerprints via surface-enhanced Raman spectroscopy (SERS), and it represents a fascinating technological horizon to investigate brain function. However, developing neuroplasmonic probes that can interface with deep brain regions with minimal invasiveness while providing the sensitivity to detect biomolecular signatures in a physiological environment is challenging, in particular because the same waveguide must be employed for both delivering excitation light and collecting the resulting scattered photons. Here, a SERS-active neural probe based on a tapered optical fiber (TF) decorated with gold nanoislands (NIs) that can detect neurotransmitters down to the micromolar range is presented. To do this, a novel, nonplanar repeated dewetting technique to fabricate gold NIs with sub-10 nm gaps, uniformly distributed on the wide (square millimeter scale in surface area), highly curved surface of TF is developed. It is experimentally and numerically shown that the amplified broadband near-field enhancement of the high-density NIs layer allows for achieving a limit of detection in aqueous solution of 10-7 m for rhodamine 6G and 10-5 m for serotonin and dopamine through SERS at near-infrared wavelengths. The NIs-TF technology is envisioned as a first step toward the unexplored frontier of in vivo label-free plasmonic neural interfaces.
Collapse
Affiliation(s)
- Di Zheng
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Liam Collard
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Antonio Balena
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Marco Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Barbara Spagnolo
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Rosa Mach-Batlle
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Francesco Tantussi
- Istituto Italiano di Tecnologia, Center for Convergent Technologies, Genova, 16163, Italy
| | - Luigi Carbone
- CNR NANOTEC - Institute of Nanotechnology, University of Salento, Lecce, 73100, Italy
| | - Francesco De Angelis
- Istituto Italiano di Tecnologia, Center for Convergent Technologies, Genova, 16163, Italy
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | | | - Cristian Ciracì
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
- Dipartimento di Ingegneria Dell'Innovazione, Università del Salento, Lecce, 73100, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE, 73010, Italy
| |
Collapse
|
3
|
Qin Y, Huang R, Lu F, Tang H, Yao B, Mao Q. Effects of the cone angle on the SERS detection sensitivity of tapered fiber probes. OPTICS EXPRESS 2022; 30:37507-37518. [PMID: 36258338 DOI: 10.1364/oe.471597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we investigate the effects of taper angle on the SERS detection sensitivity using tapered fiber probes with single-layer uniform gold spherical nanoparticles (GSNs). We show that the photothermal damage caused by excessive excitation laser power is the main factor that restricts the improvement of detection sensitivity of tapered fiber probes. Only when the cone angle is appropriate can a balance be achieved between increasing the excitation laser power and suppression of the transmission and scattering losses of the nanoparticles on the tapered fiber surface, thereby obtaining the best SERS detection sensitivity. Furthermore, the optimal cone angle depends on the complex refractive index of the equivalent composite dielectric (ECD) layer containing GSNs. For three SERS fiber probes with different ECD layers, the optimal cone angles measured are between 11-13°.
Collapse
|
4
|
Zacharovas E, Velička M, Platkevičius G, Čekauskas A, Želvys A, Niaura G, Šablinskas V. Toward a SERS Diagnostic Tool for Discrimination between Cancerous and Normal Bladder Tissues via Analysis of the Extracellular Fluid. ACS OMEGA 2022; 7:10539-10549. [PMID: 35382275 PMCID: PMC8973049 DOI: 10.1021/acsomega.2c00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/03/2022] [Indexed: 05/09/2023]
Abstract
Vibrational spectroscopy provides the possibility for sensitive and precise detection of chemical changes in biomolecules due to development of cancers. In this work, label-free near-infrared surface enhanced Raman spectroscopy (SERS) was applied for the differentiation between cancerous and normal human bladder tissues via analysis of the extracellular fluid of the tissue. Specific cancer-related SERS marker bands were identified by using a 1064 nm excitation wavelength. The prominent spectral marker band was found to be located near 1052 cm-1 and was assigned to the C-C, C-O, and C-N stretching vibrations of lactic acid and/or cysteine molecules. The correct identification of 80% of samples is achieved with even limited data set and could be further improved. The further development of such a detection method could be implemented in clinical practice for the aid of surgeons in determining of boundaries of malignant tumors during the surgery.
Collapse
Affiliation(s)
- Edvinas Zacharovas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
| | - Martynas Velička
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Platkevičius
- Clinic
of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical
Medicine, Faculty of Medicine, Vilnius University, M.K. Čiurlionio st. 21/27, LT-03101 Vilnius, Lithuania
| | - Albertas Čekauskas
- Clinic
of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical
Medicine, Faculty of Medicine, Vilnius University, M.K. Čiurlionio st. 21/27, LT-03101 Vilnius, Lithuania
| | - Aru̅nas Želvys
- Clinic
of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical
Medicine, Faculty of Medicine, Vilnius University, M.K. Čiurlionio st. 21/27, LT-03101 Vilnius, Lithuania
| | - Gediminas Niaura
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekis Avenue 3, LT 10257, Vilnius, Lithuania
| | - Valdas Šablinskas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
5
|
Qu Q, Wang J, Zeng C, Wang M, Qi W, He Z. AuNP array coated substrate for sensitive and homogeneous SERS-immunoassay detection of human immunoglobulin G. RSC Adv 2021; 11:22744-22750. [PMID: 35480431 PMCID: PMC9034334 DOI: 10.1039/d1ra02404c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
Owing to the high sensitivity, fast responsiveness and high specificity, immunoassays using surface-enhanced Raman scattering (SERS) as the readout signal displayed great potential in disease diagnosis. In this study, we developed a SERS-immunoassay method for the detection of human immunoglobulin G (HIgG). Upon involving well-ordered AuA on a SERSIA substrate, the LSPR effect was further enhanced to generate a strong and uniform Raman signal through the formation of sandwich structure with the addition of target HIgG and SERSIA tag. Optimization of the assay provided a wide linear range (0.1–200 μg mL−1) and low limit of detection (0.1 μg mL−1). In addition, the SERS-immunoassay method displayed excellent specificity and was homogeneous, which guaranteed the practical use of this method in the quantitative detection of HIgG. To validate this assay, human serum was analysed, which demonstrated the potential advantages of SERS-immunoassay technology in clinical diagnostics. An AuNP array coated substrate was developed for the SERS-immunoassay detection of human immunoglobulin G.![]()
Collapse
Affiliation(s)
- Qi Qu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China
| | - Jing Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China
| | - Chuan Zeng
- Technical Center of Zhuhai Entry-Exit Inspection and Quarantine Bureau Zhuhai P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China .,Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin 300350 P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China .,The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin Tianjin 300072 P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin 300350 P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
6
|
Zhang C, Chen S, Jiang Z, Shi Z, Wang J, Du L. Highly Sensitive and Reproducible SERS Substrates Based on Ordered Micropyramid Array and Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29222-29229. [PMID: 34115481 DOI: 10.1021/acsami.1c08712] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The construction of a highly sensitive and reproducible surface-enhanced Raman scattering (SERS) substrate is the key factor that restricts its practical application. In this paper, a three-dimensional (3D) SERS substrate based on ordered micropyramid array and silver nanoparticles (MPA/AgNPs 3D-SERS) was constructed using the roll-to-plate embossing technology and a hydrothermal method, which provided an efficient and low-cost preparation process for the SERS substrate. Using rhodamine 6G (R6G) as a probe molecule, the performance of an MPA/AgNP 3D-SERS substrate was studied in detail, whose minimum detection limit was 10-12 M and the enhancement factor was calculated as 8.8 × 109, indicating its high sensitivity. In addition, the minimum relative standard deviation (RSD) for the MPA/AgNP 3D-SERS substrate was calculated as 4.99%, and SERS performance basically had no loss after 12 days of placement, which indicated that the prepared SERS substrate had excellent stability and repeatability. At last, the thiram detection application of the MPA/AgNP 3D-SERS substrate was also investigated. The results showed that the minimum detection limit was 1 × 10-7 M, and quantitative analysis of pesticide residues could be realized. This research could provide useful guidance for the efficient and low-cost fabrication of highly sensitive and reproducible SERS substrates.
Collapse
Affiliation(s)
- Chengpeng Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Shuai Chen
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Zhaoliang Jiang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Zhenyu Shi
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Jilai Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, China
| |
Collapse
|
7
|
Jiang X, Zhang J, Xu L, Wang W, Du J, Qu M, Han X, Yang L, Zhao B. Ultrasensitive SERS detection of antitumor drug methotrexate based on modified Ag substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118589. [PMID: 32563032 DOI: 10.1016/j.saa.2020.118589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Methotrexate (MTX) is a drug with broad-spectrum antitumor activity that is of great importance in therapeutic drug monitoring applications. In this essay, the two-step modified concentrated Ag colloid with the assistance of KF and MgSO4 was used as the SERS active substrate for the ultrasensitive detection of MTX and its commercial formulations (tablets). It can be found that the two-step modification of the samples is a crucial procedure to remove the by-products in the synthesis of Ag colloid and further concentrate the Ag colloid. Under the optimal detection conditions, the minimum detection concentration of MTX is 1 × 10-16 mol/L. And, there is a good linear relationship over a wide concentration range of 1 × 10-16-1 × 10-6 mol/L. The labelled amounts of the two manufacturers of MTX commercial tablets are in the range of 96.4-104.3% with the RSDs between 1.8% and 3.5% by this method, which are in accordance with the methodological requirements. These results prove that the proposed SERS method exhibits a good reproducibility and ultra-high sensitivity for the detection of the antitumor drug MTX.
Collapse
Affiliation(s)
- Xin Jiang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jian Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Lin Xu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Weie Wang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Juan Du
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Minghuan Qu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Xiaoxia Han
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Libin Yang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China.
| |
Collapse
|
8
|
Li J, Wang H, Li Z, Su Z, Zhu Y. Preparation and Application of Metal Nanoparticals Elaborated Fiber Sensors. SENSORS 2020; 20:s20185155. [PMID: 32927607 PMCID: PMC7570743 DOI: 10.3390/s20185155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023]
Abstract
In recent years, surface plasmon resonance devices (SPR, or named plamonics) have attracted much more attention because of their great prospects in breaking through the optical diffraction limit and developing new photons and sensing devices. At the same time, the combination of SPR and optical fiber promotes the development of the compact micro-probes with high-performance and the integration of fiber and planar waveguide. Different from the long-range SPR of planar metal nano-films, the local-SPR (LSPR) effect can be excited by incident light on the surface of nano-scaled metal particles, resulting in local enhanced light field, i.e., optical hot spot. Metal nano-particles-modified optical fiber LSPR sensor has high sensitivity and compact structure, which can realize the real-time monitoring of physical parameters, environmental parameters (temperature, humidity), and biochemical molecules (pH value, gas-liquid concentration, protein molecules, viruses). In this paper, both fabrication and application of the metal nano-particles modified optical fiber LSPR sensor probe are reviewed, and its future development is predicted.
Collapse
Affiliation(s)
- Jin Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China
- Correspondence:
| | - Haoru Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Zhi Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Zhengcheng Su
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Yue Zhu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| |
Collapse
|
9
|
Zhao H, Huang D, Zhu S. Multibranch Gold Nanoparticles as Surface-Enhanced Raman Spectroscopy Substrates for Rapid and Sensitive Analysis of Fipronil in Eggs. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5354. [PMID: 31817310 PMCID: PMC6960814 DOI: 10.3390/s19245354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Abstract
A sensitive strategy to rapidly detect fipronil residues in eggs using multibranch gold nanoparticles (AuNPs) as the substrate of surface-enhanced Raman spectroscopy (SERS) was investigated in this study. Under optimized conditions, fipronil molecules preferentially deposited on the multibranch gold nanoparticles with preferential (111) facet-oriented growth due to its low surface energy. This anisotropic growth promoted the increase of SERS "hot spots", inducing a huge enhancement of Raman signals of the fipronil. An external standard calibration method was employed for quantitative analysis, and the method was validated for linearity, sensitivity, repeatability and recovery. Good linearity were found in the concentration range of 10 ng/L~10 mg/L in fipronil acetone solution (R2 = 0.9916) and 8 × 10-5 mg/m2 to 0.8 mg/m2 on eggshells (R2 = 0.9906), respectively. The recovery rate based on acetone recovered fipronil on eggshells and in egg liquids was 80.13%~87.87%, and 81.34%~88.89%, respectively. The SERS assay was successfully used to monitor fipronil in eggs.
Collapse
Affiliation(s)
| | - Dandan Huang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271000, China;
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271000, China;
| |
Collapse
|
10
|
|
11
|
Yang L, Chen Y, Shen Y, Yang M, Li X, Han X, Jiang X, Zhao B. SERS strategy based on the modified Au nanoparticles for highly sensitive detection of bisphenol A residues in milk. Talanta 2018; 179:37-42. [DOI: 10.1016/j.talanta.2017.10.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
|