1
|
Fan J, Xiao Z, Dong Y, Ye F, Qiu Y, Zhang C, Yin X, Li Y, Wang T. Nanocarrier-Mediated RNA Delivery Platform as a Frontier Strategy for Hepatic Disease Treatment: Challenges and Opportunities. Adv Healthc Mater 2025; 14:e2402933. [PMID: 39723654 DOI: 10.1002/adhm.202402933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Hepatic diseases cause serious public health problems worldwide, and there is an urgent need to develop effective therapeutic agents. In recent years, significant progress is made in RNA therapy, and RNA molecules, such as mRNAs, siRNAs, miRNAs, and RNA aptamers, are shown to provide significant advantages in the treatment of hepatic diseases. However, the drawbacks of RNAs, such as their poor biological stability, easy degradation by nucleases in vivo, low bioavailability, and low concentrations in target tissues, significantly limit the clinical application of RNA-based drugs. Therefore, exploring and developing effective nanoscale delivery platforms for RNA therapeutics are of immense value. This review focuses on the different types of hepatic diseases and RNA therapeutics, summarizing various nanoscale delivery platforms and their strengths and weaknesses. Finally, the current status and future prospects of nanoscale delivery systems for RNA therapy are discussed.
Collapse
Affiliation(s)
- Jinhui Fan
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Zhicheng Xiao
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Yafen Dong
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201200, China
| | - Fei Ye
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Yan Qiu
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201200, China
| | - Chuan Zhang
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Xiaolan Yin
- Cancer center, Shanghai 411 hospital, China RongTong Medical Healthcare Group Co. Ltd./411 Hospital, Shanghai University, Shanghai, 200081, China
| | - Yi Li
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Tingfang Wang
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
2
|
Wu C, Zhang Y, Li F, Bei S, Pan M, Feng L. Precise engineering of cholesterol-loaded chitosan micelles as a promising nanocarrier system for co-delivery drug-siRNA for the treatment of gastric cancer therapy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
3
|
Kumar M, Dogra R, Mandal UK. Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Huang H, Yuan S, Ma Z, Ji P, Ma X, Wu Z, Qi X. Genetic recombination of poly(l-lysine) functionalized apoferritin nanocages that resemble viral capsid nanometer-sized platforms for gene therapy. Biomater Sci 2020; 8:1759-1770. [PMID: 32010909 DOI: 10.1039/c9bm01822k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Currently, bioengineered apoferritin nanocages with flexible protein shells and functionalized modifications have become an attractive approach for efficient anti-tumor therapy. Here, we modified the N-terminus of H-chain subunits in apoferritin with different amounts of lysine via genetic recombination to obtain a poly(l-lysine) modified H-chain apoferritin (nL-HFn) nanocage for siRNA delivery and gene therapy. To achieve excellent cellular affinity and uptake, the nanocarriers were internalized through transferrin receptor-mediated endocytosis, then escaped from the endosome for cytoplasmic transport. Compared with natural apoferritin, the siRNA-loaded genetic recombination NPs modified with lysine exhibit stronger RNA-interference and antitumor efficiency both in vitro and in 4T1 tumor model mice. Therefore, bioengineered apoferritin nanocages modified with lysine might be a promising platform for nucleic acid drug delivery.
Collapse
Affiliation(s)
- Haiqin Huang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Shirui Yuan
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhuo Ma
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Peng Ji
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaonan Ma
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Bholakant R, Qian H, Zhang J, Huang X, Huang D, Feijen J, Zhong Y, Chen W. Recent Advances of Polycationic siRNA Vectors for Cancer Therapy. Biomacromolecules 2020; 21:2966-2982. [DOI: 10.1021/acs.biomac.0c00438] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raut Bholakant
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jan Feijen
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, TECHMED Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
6
|
Liang Q, Li F, Li Y, Liu Y, Lan M, Wu S, Wu X, Ji Y, Zhang R, Yin L. Self-assisted membrane-penetrating helical polypeptides mediate anti-inflammatory RNAi against myocardial ischemic reperfusion (IR) injury. Biomater Sci 2019; 7:3717-3728. [DOI: 10.1039/c9bm00719a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aromatically-modified helical polypeptide mediates membrane-penetrating RAGE siRNA delivery toward anti-inflammatory treatment against myocardial IR injury.
Collapse
|
7
|
Zhao X, Song W, Chen Y, Liu S, Ren L. Collagen-based materials combined with microRNA for repairing cornea wounds and inhibiting scar formation. Biomater Sci 2019; 7:51-62. [DOI: 10.1039/c8bm01054d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AuNP/miR-133b can be released from cornea regeneration materials and entered into stromal cells to inhibit cornea scar formation.
Collapse
Affiliation(s)
- Xuan Zhao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Wenjing Song
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yawei Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction
- Guangzhou 510006
- P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education
- South China University of Technology
| | - Sa Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Li Ren
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| |
Collapse
|
8
|
Luo X, Wang W, Dorkin JR, Veiseh O, Chang PH, Abutbul-Ionita I, Danino D, Langer R, Anderson DG, Dong Y. Poly(glycoamidoamine) brush nanomaterials for systemic siRNA delivery in vivo. Biomater Sci 2018; 5:38-40. [PMID: 27921096 DOI: 10.1039/c6bm00683c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Delivery is the key challenge for siRNA based therapeutics. Here, we report the development of new poly(glycoamidoamine) brush nanomaterials for efficient siRNA delivery. GluN4C10 polymer brush nanoparticles, a lead material, demonstrated significantly improved delivery efficiency for siRNA against factor VII (FVII) in mice compared to poly(glycoamidoamine) brush nanomaterials reported previously.
Collapse
Affiliation(s)
- X Luo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - W Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Department of Anesthesiology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - J R Dorkin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - O Veiseh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Department of Anesthesiology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - P H Chang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Department of Anesthesiology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - I Abutbul-Ionita
- Department of Biotechnology and Food Engineering, Technion Institute of Technology and the Russell Berrie Nanotechnology Institute, Haifa 32000, Israel
| | - D Danino
- Department of Biotechnology and Food Engineering, Technion Institute of Technology and the Russell Berrie Nanotechnology Institute, Haifa 32000, Israel
| | - R Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Department of Anesthesiology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - D G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Department of Anesthesiology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Y Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA. and Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA and The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, USA and The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Shen Y, Hao T, Ou S, Hu C, Chen L. Applications and perspectives of nanomaterials in novel vaccine development. MEDCHEMCOMM 2018; 9:226-238. [PMID: 30108916 PMCID: PMC6083789 DOI: 10.1039/c7md00158d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/17/2017] [Indexed: 01/22/2023]
Abstract
Vaccines show great potential for both prophylactic and therapeutic use in infections, cancer, and other diseases. With the rapid development of bio-technologies and materials sciences, nanomaterials are playing essential roles in novel vaccine formulations and can boost antigen effectiveness by operating as delivery systems to enhance antigen processing and/or as immune-potentiating adjuvants to induce or potentiate immune responses. The effect of nanoparticles in vaccinology showed enhanced antigen stability and immunogenicity as well as targeted delivery and slow release. However, obstacles remain due to the lack of fundamental knowledge on the detailed molecular working mechanism and in vivo bio-effects of nanoparticles. This review provides a broad overview of the current improvements in nanoparticles in vaccinology. Modern nanoparticle vaccines are classified by the nanoparticles' action based on either delivery system or immune potentiator approaches. The mechanisms of interaction of nanoparticles with the antigens and the immune system are discussed. Nanoparticle vaccines approved for use are also listed. A fundamental understanding of the in vivo bio-distribution and the fate of nanoparticles will accelerate the rational design of new nanoparticles comprising vaccines in the future.
Collapse
Affiliation(s)
- Yingbin Shen
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| | - Tianyao Hao
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| | - Shiyi Ou
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| | - Churan Hu
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| | - Long Chen
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| |
Collapse
|
10
|
Xia Y, Wang C, Xu T, Li Y, Guo M, Lin Z, Zhao M, Zhu B. Targeted delivery of HES5-siRNA with novel polypeptide-modified nanoparticles for hepatocellular carcinoma therapy. RSC Adv 2018; 8:1917-1926. [PMID: 35542585 PMCID: PMC9077277 DOI: 10.1039/c7ra12461a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022] Open
Abstract
For actively targeted delivery of small interfering RNA (siRNA) to solid tumors, we fabricated functionalized selenium nanoparticles (SeNPs) decorated with the polypeptide RGDfC. Herein, RGDfC was used as tumor-targeted moiety and installed onto the surface of SeNPs to enhance the cellular uptake. RGDfC-SeNPs@siRNA were internalized into the HepG2 cell mainly through clathrin-mediated endocytosis. The active efficacy of the RGDfC-SeNPs@siRNA was confirmed via gene silencing assay, MTT assay and flow cytometry analysis. Owing to the tumor-targeting effect of RGDfC, RGDfC-SeNPs@siRNA achieved an obvious improvement in gene silencing ability, which led to significant growth inhibition of HepG2 cells. Furthermore, treatment with RGDfC-SeNPs@siRNA resulted in greater antitumor efficacy than lipofectamine 2000@siRNA in vitro and in vivo. In addition, the RGDfC-SeNPs@siRNA was almost non-toxic to the key organs of mice. In sum, these findings provide an alternative therapeutic route for targeted cancer treatments. A novel polypeptide RGDfC-modified selenium nanoparticle was fabricated to selectively deliver HES5-siRNA to tumors for hepatocellular carcinoma therapy.![]()
Collapse
Affiliation(s)
- Yu Xia
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Changbing Wang
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Tiantian Xu
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Yinghua Li
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Min Guo
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Zhengfang Lin
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Mingqi Zhao
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Bing Zhu
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| |
Collapse
|
11
|
Sun Q, Tang C, Su Z, Du J, Shang Y, Xue L, Zhang C. A modular assembly pH-sensitive charge reversal siRNA delivery system. Biomater Sci 2018; 6:3075-3084. [DOI: 10.1039/c8bm01062e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cationic lipids and polymers are the most common non-viral vectors for siRNA delivery; however, their intense positively charged character may give rise to serum-triggered aggregation, immune activation, inflammation stimulation and grievous toxicity.
Collapse
Affiliation(s)
- Qiong Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Chunming Tang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zhigui Su
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Junjie Du
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yunkai Shang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Can Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
12
|
Zhou Q, Wang Y, Xiang J, Piao Y, Zhou Z, Tang J, Liu X, Shen Y. Stabilized calcium phosphate hybrid nanocomposite using a benzoxaborole-containing polymer for pH-responsive siRNA delivery. Biomater Sci 2018; 6:3178-3188. [DOI: 10.1039/c8bm00575c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we developed a PEG-PBO/siRNA/CaP hybrid nanocomposite with excellent stability and high siRNA loading content for effective pH-responsive siRNA delivery.
Collapse
Affiliation(s)
- Quan Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yue Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jiajia Xiang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ying Piao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
13
|
Du XJ, Wang ZY, Wang YC. Redox-sensitive dendrimersomes assembled from amphiphilic Janus dendrimers for siRNA delivery. Biomater Sci 2018; 6:2122-2129. [DOI: 10.1039/c8bm00491a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cationic redox-sensitive Janus dendrimer (ssJD) that self-assembles into redox-sensitive dendrimersomes (RSDs) to complex with siRNA can readily deliver siRNA into tumor cells, and then rapidly release siRNA in a reductive environment to down-regulate a targeted gene.
Collapse
Affiliation(s)
- Xiao-Jiao Du
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Ze-Yu Wang
- International Department
- The Affiliated High School of South China Normal University
- Guangzhou
- P.R. China
| | - Yu-Cai Wang
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P.R. China
| |
Collapse
|
14
|
Øvergård AC, Hamre LA, Kongshaug H, Nilsen F. RNAi-mediated treatment of two vertically transmitted rhabdovirus infecting the salmon louse (Lepeophtheirus salmonis). Sci Rep 2017; 7:14030. [PMID: 29070796 PMCID: PMC5656668 DOI: 10.1038/s41598-017-14282-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
Rhabdoviruses are a family of enveloped negative-sense single-stranded RNA viruses infecting a variety of hosts. Recently, two vertically transmitted salmon louse (Lepeophtheirus salmonis) rhabdoviruses (LsRV) have been identified. The prevalence of these viruses was measured along the Norwegian coast and found to be close to 100%, and with the present lack of suitable cell lines to propagate these viruses, it is challenging to obtain material to study their host impact and infection routes. Thus, virus free lice strains were established from virus infected lice carrying one or both LsRVs by treating them with N protein dsRNA twice during development. The viral replication of the N protein was specifically down-regulated following introduction of virus-specific dsRNA, and virus-free lice strains were maintained for several generations. A preliminary study on infection routes suggested that the LsRV-No9 is maternally transmitted, and that the virus transmits from males to females horizontally. The ability to produce virus free strains allows for further studies on transmission modes and how these viruses influences on the L.salmonis interaction with its salmonid host. Moreover, this study provides a general fundament for future studies on how vertically transmitted rhabdoviruses influence the biology of their arthropod hosts.
Collapse
Affiliation(s)
- Aina-Cathrine Øvergård
- SLCR-Sea Lice Research Centre, Department of Biology, University of Bergen, Thormøhlensgt. 55, Pb. 7803, NO-5020, Bergen, Norway.
| | - Lars Are Hamre
- SLCR-Sea Lice Research Centre, Department of Biology, University of Bergen, Thormøhlensgt. 55, Pb. 7803, NO-5020, Bergen, Norway
| | - Heidi Kongshaug
- SLCR-Sea Lice Research Centre, Department of Biology, University of Bergen, Thormøhlensgt. 55, Pb. 7803, NO-5020, Bergen, Norway
| | - Frank Nilsen
- SLCR-Sea Lice Research Centre, Department of Biology, University of Bergen, Thormøhlensgt. 55, Pb. 7803, NO-5020, Bergen, Norway
| |
Collapse
|
15
|
Liu Z, Li D, Dai H, Huang H. Enhanced properties of tea residue cellulose hydrogels by addition of graphene oxide. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Cai K, Wang AZ, Yin L, Cheng J. Bio-nano interface: The impact of biological environment on nanomaterials and their delivery properties. J Control Release 2017; 263:211-222. [DOI: 10.1016/j.jconrel.2016.11.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022]
|
17
|
Darrington M, Dalmay T, Morrison NI, Chapman T. Implementing the sterile insect technique with RNA interference - a review. ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA 2017; 164:155-175. [PMID: 29200471 PMCID: PMC5697603 DOI: 10.1111/eea.12575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 05/22/2023]
Abstract
We review RNA interference (RNAi) of insect pests and its potential for implementing sterile insect technique (SIT)-related control. The molecular mechanisms that support RNAi in pest species are reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster Meigen and Homo sapiens L. The underlying genes that enable RNAi are generally conserved across taxa, although variance exists in both their form and function. RNAi represents a plausible, non-GM system for targeting populations of insects for control purposes, if RNAi effector molecules can be delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders and review to what extent taxonomy, genetics, and differing methods of double-stranded (ds) RNA synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects cannot be used to reliably forecast the efficiency of an eRNAi response. The mechanisms by which insects acquire dsRNA from their environment require further research, but the evidence to date suggests that endocytosis and transport channels both play key roles. Delivery of RNA molecules packaged in intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the gut, and enable the evasion of host defence systems, such as toxic pH, that would otherwise attenuate the potential for RNAi.
Collapse
Affiliation(s)
- Michael Darrington
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | - Tamas Dalmay
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | | | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| |
Collapse
|
18
|
Zhu L, Simpson JM, Xu X, He H, Zhang D, Yin L. Cationic Polypeptoids with Optimized Molecular Characteristics toward Efficient Nonviral Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23476-23486. [PMID: 28653538 DOI: 10.1021/acsami.7b06031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The rational design of gene vectors relies on the understanding of their structure-property relationship. Polypeptoids, which are structural isomers of natural polypeptides, hold great potential as gene delivery vectors due to their facile preparation, structural tunability, and most importantly, their desirable proteolytic stability. We herein designed a library of polypeptoids with different cationic side-chain terminal groups, degree of polymerizations (DPs), side-chain lengths, and incorporated aliphatic side chains, to unravel the structure-property relationships so that gene delivery efficiency can be maximized and cytotoxicity can be minimized. In HeLa cells, a polypeptoid bearing a primary amine side-chain terminal group exhibited remarkably higher transfection efficiency than that of its analogues containing secondary, tertiary, or quaternary amine groups. Elongation of the polypeptoid backbone length (from 28 to 251 mer) led to enhanced DNA condensation as well as cellular uptake levels, however it also caused higher cytotoxicity. Upon a proper balance between DNA uptake and cytotoxicity, the polypeptoid with a DP of 46 afforded the highest transfection efficiency. Elongating the aliphatic spacer between the backbone and side amine groups enhanced the hydrophobicity of the side chains, which resulted in notably increased membrane activities and transfection efficiency. Further incorporation of hydrophobic decyl side chains led to an improvement in transfection efficiency of ∼6 fold. The top-performing material identified, P11, mediated successful gene transfection under serum-containing conditions, outperforming the commercial transfection reagent poly(ethylenimine) by nearly 4 orders of magnitude. Reflecting its excellent serum-resistant properties, P11 further enabled effective transfection in vivo following intratumoral injection to melanoma-bearing mice. This study will help the rational design of polypeptoid-based gene delivery materials, and the best-performing material identified may provide a potential supplement to existing gene vectors.
Collapse
Affiliation(s)
- Lipeng Zhu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, P. R. China
| | - Jessica M Simpson
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Xin Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, P. R. China
| | - Hua He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, P. R. China
| | - Donghui Zhang
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|
19
|
Li F, Li Y, Zhou Z, Lv S, Deng Q, Xu X, Yin L. Engineering the Aromaticity of Cationic Helical Polypeptides toward "Self-Activated" DNA/siRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23586-23601. [PMID: 28657294 DOI: 10.1021/acsami.7b08534] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of potent yet nontoxic membrane-penetrating materials is in high demand for effective intracellular gene delivery. We have recently developed α-helical polypeptides which afford potent membrane activities to facilitate intracellular DNA delivery via both endocytosis and the nonendocytic "pore formation" mechanism. Endocytosis will cause endosomal entrapment of the DNA cargo, while excessive "pore formation" would cause appreciable cytotoxicity. Additionally, helical polypeptides with stiff, rodlike structure suffer from low siRNA binding affinity. To address such critical issues, we herein incorporated various aromatic domains (benzyl, naphthyl, biphenyl, anthryl, and pyrenyl) into the side-chain terminals of guanidine-rich, helical polypeptides, wherein the flat-rigid shape, π-electronic structures of aromatic motifs "self-activated" the membrane-penetrating capabilities of polypeptides to promote intracellular gene delivery. Benzyl (Bn)- and naphthyl (Naph)-modified polypeptides demonstrated the highest DNA uptake level that outperformed the unmodified polypeptide, P2, by ∼4 fold. More importantly, compared with P2, Bn- and Naph-modified polypeptides allowed more DNA cargos to be internalized via the nonendocytic pathway, which significantly bypassed the endosomal entrapment and accordingly enhanced the transfection efficiency by up to 42 fold, outperforming PEI 25k as the commercial reagent by 3-4 orders of magnitude. The aromatic modification also improved the siRNA condensation capability of polypeptides, achieving notably enhanced gene-silencing efficiency against tumor necrosis factor-α to treat acute hepatic inflammation. Furthermore, we revealed that aromaticity-augmented membrane activity was accompanied by comparable or even significantly reduced "pore formation" capability, thus leading to diminished cytotoxicity at high concentrations. This study therefore provides a promising approach to manipulate the membrane activities and penetration mechanisms of polycations, which overcomes the multiple critical barriers preventing effective and safe gene delivery.
Collapse
Affiliation(s)
- Fangfang Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Yongjuan Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Zhuchao Zhou
- Department of General Surgery, Huashan Hospital, Fudan University , Shanghai 200040, China
| | - Shixian Lv
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Qiurong Deng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Xin Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| |
Collapse
|
20
|
Hu Y, Wang L, Zhu H, Li Z. Superheated steam treatment improved flour qualities of wheat in suitable conditions. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13238] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yueming Hu
- College of Food Science and Nutritional Engineering; China Agricultural University, 17 Qinghua Dong Lu; Haidian District Beijing 100083 China
| | - Lijuan Wang
- College of Food Science and Nutritional Engineering; China Agricultural University, 17 Qinghua Dong Lu; Haidian District Beijing 100083 China
| | - Hong Zhu
- College of Food Science and Nutritional Engineering; China Agricultural University, 17 Qinghua Dong Lu; Haidian District Beijing 100083 China
| | - Zaigui Li
- College of Food Science and Nutritional Engineering; China Agricultural University, 17 Qinghua Dong Lu; Haidian District Beijing 100083 China
| |
Collapse
|
21
|
Ali Z, Wang J, Tang Y, Liu B, He N, Li Z. Simultaneous detection of multiple viruses based on chemiluminescence and magnetic separation. Biomater Sci 2017; 5:57-66. [DOI: 10.1039/c6bm00527f] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, a DNA hybridization based chemiluminescent detection method has been proposed for reliable detection of multiple pathogens. The use of surface modified magnetic nanoparticles can help to integrate this system into an automated platform for high throughput applications.
Collapse
Affiliation(s)
- Zeeshan Ali
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Jiuhai Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Yongjun Tang
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- P. R. China
| | - Bin Liu
- Department of Biomedical Engineering
- School of Basic Medical Sciences
- Nanjing Medical University
- Nanjing 210029
- China
| | - Nongyue He
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Zhiyang Li
- Department of Clinical Laboratory
- the Affiliated Drum Tower Hospital of Nanjing University Medical School
- Nanjing 210008
- P. R. China
| |
Collapse
|
22
|
Permyakova ES, Novopashina DS, Venyaminova AG, Apartsin EK. Non-covalent anchoring of oligonucleotides on single-walled carbon nanotubes via short bioreducible linker. RSC Adv 2017. [DOI: 10.1039/c7ra04933a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This paper describes a simple approach to obtain hybrids of single-walled carbon nanotubes with therapeutically relevant oligonucleotides that are able to be released upon glutathione treatment at physiological concentrations.
Collapse
Affiliation(s)
| | - Darya S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| | - Evgeny K. Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| |
Collapse
|
23
|
Deng Q, Li X, Zhu L, He H, Chen D, Chen Y, Yin L. Serum-resistant, reactive oxygen species (ROS)-potentiated gene delivery in cancer cells mediated by fluorinated, diselenide-crosslinked polyplexes. Biomater Sci 2017; 5:1174-1182. [DOI: 10.1039/c7bm00334j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fluorinated, diselenide-crosslinked polyplexes were developed to enable ROS-responsive and serum-resistant gene delivery in cancer cells.
Collapse
Affiliation(s)
- Qiurong Deng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P.R. China
| | - Xudong Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P.R. China
| | - Lipeng Zhu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P.R. China
| | - Hua He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P.R. China
| | - Donglai Chen
- Department of Thoracic Surgery
- Shanghai Pulmonary Hospital
- Tongji University School of Medicine
- Shanghai
- P.R. China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215004
- P.R. China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P.R. China
| |
Collapse
|