1
|
Yim J, Park J, Kim G, Lee HH, Chung JS, Jo A, Koh M, Park J. Conditional PROTAC: Recent Strategies for Modulating Targeted Protein Degradation. ChemMedChem 2024; 19:e202400326. [PMID: 38993102 PMCID: PMC11581424 DOI: 10.1002/cmdc.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising technology for inducing targeted protein degradation by leveraging the intrinsic ubiquitin-proteasome system (UPS). While the potential druggability of PROTACs toward undruggable proteins has accelerated their rapid development and the wide-range of applications across diverse disease contexts, off-tissue effects and side-effects of PROTACs have recently received attentions to improve their efficacy. To address these issues, spatial or temporal target protein degradation by PROTACs has been spotlighted. In this review, we explore chemical strategies for modulating protein degradation in a cell type-specific (spatio-) and time-specific (temporal-) manner, thereby offering insights for expanding PROTAC applications to overcome the current limitations of target protein degradation strategy.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
| | - Junyoung Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| | - Gabin Kim
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Hyung Ho Lee
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Jin Soo Chung
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Ala Jo
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| | - Minseob Koh
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Jongmin Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| |
Collapse
|
2
|
Adhikari K, Vanermen M, Da Silva G, Van den Wyngaert T, Augustyns K, Elvas F. Trans-cyclooctene-a Swiss army knife for bioorthogonal chemistry: exploring the synthesis, reactivity, and applications in biomedical breakthroughs. EJNMMI Radiopharm Chem 2024; 9:47. [PMID: 38844698 PMCID: PMC11156836 DOI: 10.1186/s41181-024-00275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Trans-cyclooctenes (TCOs) are highly strained alkenes with remarkable reactivity towards tetrazines (Tzs) in inverse electron-demand Diels-Alder reactions. Since their discovery as bioorthogonal reaction partners, novel TCO derivatives have been developed to improve their reactivity, stability, and hydrophilicity, thus expanding their utility in diverse applications. MAIN BODY TCOs have garnered significant interest for their applications in biomedical settings. In chemical biology, TCOs serve as tools for bioconjugation, enabling the precise labeling and manipulation of biomolecules. Moreover, their role in nuclear medicine is substantial, with TCOs employed in the radiolabeling of peptides and other biomolecules. This has led to their utilization in pretargeted nuclear imaging and therapy, where they function as both bioorthogonal tags and radiotracers, facilitating targeted disease diagnosis and treatment. Beyond these applications, TCOs have been used in targeted cancer therapy through a "click-to-release" approach, in which they act as key components to selectively deliver therapeutic agents to cancer cells, thereby enhancing treatment efficacy while minimizing off-target effects. However, the search for a suitable TCO scaffold with an appropriate balance between stability and reactivity remains a challenge. CONCLUSIONS This review paper provides a comprehensive overview of the current state of knowledge regarding the synthesis of TCOs, and its challenges, and their development throughout the years. We describe their wide ranging applications as radiolabeled prosthetic groups for radiolabeling, as bioorthogonal tags for pretargeted imaging and therapy, and targeted drug delivery, with the aim of showcasing the versatility and potential of TCOs as valuable tools in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Karuna Adhikari
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Maarten Vanermen
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Gustavo Da Silva
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium.
| | - Filipe Elvas
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
3
|
Fortuni B, Ricci M, Vitale R, Inose T, Zhang Q, Hutchison JA, Hirai K, Fujita Y, Toyouchi S, Krzyzowska S, Van Zundert I, Rocha S, Uji-I H. SERS Endoscopy for Monitoring Intracellular Drug Dynamics. ACS Sens 2023; 8:2340-2347. [PMID: 37219991 DOI: 10.1021/acssensors.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Understanding the dynamics and distribution of medicinal drugs in living cells is essential for the design and discovery of treatments. The tools available for revealing this information are, however, extremely limited. Here, we report the application of surface-enhanced Raman scattering (SERS) endoscopy, using plasmonic nanowires as SERS probes, to monitor the intracellular fate and dynamics of a common chemo-drug, doxorubicin, in A549 cancer cells. The unique spatio-temporal resolution of this technique reveals unprecedented information on the mode of action of doxorubicin: its localization in the nucleus, its complexation with medium components, and its intercalation with DNA as a function of time. Notably, we were able to discriminate these factors for the direct administration of doxorubicin or the use of a doxorubicin delivery system. The results reported here show that SERS endoscopy may have an important future role in medicinal chemistry for studying the dynamics and mechanism of action of drugs in cells.
Collapse
Affiliation(s)
- Beatrice Fortuni
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Monica Ricci
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Raffaele Vitale
- U. Lille, CNRS, LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Cité Scientifique, F-59000 Lille, France
| | - Tomoko Inose
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Qiang Zhang
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - James Andell Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kenji Hirai
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Yasuhiko Fujita
- Toray Research Center, Inc., Sonoyama 3-3-7, Otsu, Shiga 520-8567, Japan
| | - Shuichi Toyouchi
- Research Institute for Light-Induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
| | - Sandra Krzyzowska
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Indra Van Zundert
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Hiroshi Uji-I
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
4
|
Wang J, Wang X, Fan X, Chen PR. Unleashing the Power of Bond Cleavage Chemistry in Living Systems. ACS CENTRAL SCIENCE 2021; 7:929-943. [PMID: 34235254 PMCID: PMC8227596 DOI: 10.1021/acscentsci.1c00124] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 05/02/2023]
Abstract
Bioorthogonal cleavage chemistry has been rapidly emerging as a powerful tool for manipulation and gain-of-function studies of biomolecules in living systems. While the initial bond formation-centered bioorthogonal reactions have been widely adopted for labeling, tracing, and capturing biomolecules, the newly developed bond cleavage-enabled bioorthogonal reactions have opened new possibilities for rescuing small molecules as well as biomacromolecules in living systems, allowing multidimensional controls over biological processes in vitro and in vivo. In this Outlook, we first summarized the development and applications of bioorthogonal cleavage reactions (BCRs) that restore the functions of chemical structures as well as more complex networks, including the liberation of prodrugs, release of bioconjugates, and in situ reactivation of intracellular proteins. As we embarked on this fruitful progress, we outlined the unmet scientific needs and future directions along this exciting avenue. We believe that the potential of BCRs will be further unleashed when combined with other frontier technologies, such as genetic code expansion and proximity-enabled chemical labeling.
Collapse
Affiliation(s)
- Jie Wang
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Xin Wang
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Peng R. Chen
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
- Peking−Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
6
|
"One-stitch" bioorthogonal prodrug activation based on cross-linked lipoic acid nanocapsules. Biomaterials 2021; 273:120823. [PMID: 33930738 DOI: 10.1016/j.biomaterials.2021.120823] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 01/23/2023]
Abstract
Bioorthogonal prodrug activation is fascinating but suffers from staggered administration of prodrug and trigger, which would not only reduce the therapeutic effect but bring great inconvenience for clinical application. Herein, we report a new cross-linked lipoic acid nanocapsules (cLANCs) based two-component bioorthogonal nanosystem for "one-stitch" prodrug activation. Due to the reversible stability of cLANCs, the loaded prodrug and trigger cannot release in advance while can react upon arrival in the tumor tissue. Moreover, the cLANCs would be degraded into dihydrolipoic acid in tumor cells to potentiate the anticancer effect of the drug synthesized in situ. The data showed that the new bioorthogonal system held a killing effect 1.63 times higher than that of parent drug 3 against human colorectal tumor cells (HT29) and a tumor inhibitory rate 34.2% higher than that of 3 against HT29 tumor xenograft model with negligible side effects. The biodistribution study showed that the "one-stitch" prodrug activation exhibited a selective accumulation of 3 in the tumor tissue compared with free 3 group (34.2 μg vs 3.56 μg of 3/g of tissue). This two-component bioorthogonal nanosystem based on cross-linked lipoic acid nanocapsules constitutes the first example of "one-stitch" bioorthogonal prodrug activation.
Collapse
|
7
|
Stéen EJ, Jørgensen JT, Denk C, Battisti UM, Nørregaard K, Edem PE, Bratteby K, Shalgunov V, Wilkovitsch M, Svatunek D, Poulie CBM, Hvass L, Simón M, Wanek T, Rossin R, Robillard M, Kristensen JL, Mikula H, Kjaer A, Herth MM. Lipophilicity and Click Reactivity Determine the Performance of Bioorthogonal Tetrazine Tools in Pretargeted In Vivo Chemistry. ACS Pharmacol Transl Sci 2021; 4:824-833. [PMID: 33860205 PMCID: PMC8033778 DOI: 10.1021/acsptsci.1c00007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 12/12/2022]
Abstract
The development of highly selective and fast biocompatible reactions for ligation and cleavage has paved the way for new diagnostic and therapeutic applications of pretargeted in vivo chemistry. The concept of bioorthogonal pretargeting has attracted considerable interest, in particular for the targeted delivery of radionuclides and drugs. In nuclear medicine, pretargeting can provide increased target-to-background ratios at early time-points compared to traditional approaches. This reduces the radiation burden to healthy tissue and, depending on the selected radionuclide, enables better imaging contrast or higher therapeutic efficiency. Moreover, bioorthogonally triggered cleavage of pretargeted antibody-drug conjugates represents an emerging strategy to achieve controlled release and locally increased drug concentrations. The toolbox of bioorthogonal reactions has significantly expanded in the past decade, with the tetrazine ligation being the fastest and one of the most versatile in vivo chemistries. Progress in the field, however, relies heavily on the development and evaluation of (radio)labeled compounds, preventing the use of compound libraries for systematic studies. The rational design of tetrazine probes and triggers has thus been impeded by the limited understanding of the impact of structural parameters on the in vivo ligation performance. In this work, we describe the development of a pretargeted blocking assay that allows for the investigation of the in vivo fate of a structurally diverse library of 45 unlabeled tetrazines and their capability to reach and react with pretargeted trans-cyclooctene (TCO)-modified antibodies in tumor-bearing mice. This study enabled us to assess the correlation of click reactivity and lipophilicity of tetrazines with their in vivo performance. In particular, high rate constants (>50 000 M-1 s-1) for the reaction with TCO and low calculated logD 7.4 values (below -3) of the tetrazine were identified as strong indicators for successful pretargeting. Radiolabeling gave access to a set of selected 18F-labeled tetrazines, including highly reactive scaffolds, which were used in pretargeted PET imaging studies to confirm the results from the blocking study. These insights thus enable the rational design of tetrazine probes for in vivo application and will thereby assist the clinical translation of bioorthogonal pretargeting.
Collapse
Affiliation(s)
- E. Johanna
L. Stéen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
| | - Jesper T. Jørgensen
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Christoph Denk
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Umberto M. Battisti
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Patricia E. Edem
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Klas Bratteby
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Department
of Radiation Physics, Skåne University
Hospital, Barngatan 3, 22242 Lund, Sweden
| | - Vladimir Shalgunov
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Martin Wilkovitsch
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Dennis Svatunek
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Christian B. M. Poulie
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Lars Hvass
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Marina Simón
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Thomas Wanek
- Preclinical
Molecular Imaging, AIT Austrian Institute
of Technology GmbH, 2444 Seibersdorf, Austria
| | - Raffaella Rossin
- Tagworks
Pharmaceuticals, Geert
Grooteplein 10, 6525 GA Nijmegen, Netherlands
| | - Marc Robillard
- Tagworks
Pharmaceuticals, Geert
Grooteplein 10, 6525 GA Nijmegen, Netherlands
| | - Jesper L. Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hannes Mikula
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Andreas Kjaer
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Matthias M. Herth
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Wang Y, Zhang C, Wu H, Feng P. Activation and Delivery of Tetrazine-Responsive Bioorthogonal Prodrugs. Molecules 2020; 25:E5640. [PMID: 33266075 PMCID: PMC7731009 DOI: 10.3390/molecules25235640] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 02/05/2023] Open
Abstract
Prodrugs, which remain inert until they are activated under appropriate conditions at the target site, have emerged as an attractive alternative to drugs that lack selectivity and show off-target effects. Prodrugs have traditionally been activated by enzymes, pH or other trigger factors associated with the disease. In recent years, bioorthogonal chemistry has allowed the creation of prodrugs that can be chemically activated with spatio-temporal precision. In particular, tetrazine-responsive bioorthogonal reactions can rapidly activate prodrugs with excellent biocompatibility. This review summarized the recent development of tetrazine bioorthogonal cleavage reaction and great promise for prodrug systems.
Collapse
Affiliation(s)
- Yayue Wang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Chang Zhang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Ping Feng
- Institute of Clinical Trials, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Uyar TB, Wu K, He M, Khan I, Royzen M, Yigit MV. Switchable Fluorescence of Doxorubicin for Label-Free Imaging of Bioorthogonal Drug Release. ChemMedChem 2020; 15:988-994. [PMID: 32216081 PMCID: PMC7397846 DOI: 10.1002/cmdc.202000065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Monitoring the release and activation of prodrug formulations provides essential information about the outcome of a therapy. While the prodrug delivery can be confirmed by using different imaging techniques, confirming the release of active payload by using imaging is a challenge. Here, we have discovered that the switchable fluorescence of doxorubicin can validate drug release upon its uncaging reaction with a highly specific chemical partner. We have observed that the conjugation of doxorubicin with a trans-cyclooctene (TCO) diminishes its fluorescence at 595 nm. This quenched fluorescence of the doxorubicin prodrug is recovered upon its bond-cleaving reaction with tetrazine. Clinically assessed iron oxide nanoparticles were used to formulate a doxorubicin nanodrug. The release of doxorubicin from the nanodrug was studied under various experimental conditions. A fivefold increase in doxorubicin fluorescence is observed after complete release. The studies were carried out in vitro in MDA-MB-231 breast cancer cells. An increase in Dox signal was observed upon tetrazine administration. This switchable fluorescence mechanism of Dox could be employed for fundamental studies, that is, the reactivity of various tetrazine and TCO linker types under different experimental conditions. In addition, the system could be instrumental for translational research where the release and activation of doxorubicin prodrug payloads can be monitored by using optical imaging systems.
Collapse
Affiliation(s)
- Taha Bilal Uyar
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Kui Wu
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Muhan He
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Irfan Khan
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Maksim Royzen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
- The RNA Institute University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Mehmet V Yigit
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
- The RNA Institute University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
10
|
Tian X, Li Z, Ding N, Zhang J. Near-infrared ratiometric self-assembled theranostic nanoprobe: imaging and tracking cancer chemotherapy. Chem Commun (Camb) 2020; 56:3629-3632. [DOI: 10.1039/d0cc00416b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel near-infrared ratiometric fluorescent theranostic nanoprobe is applied for real-time fluorescence tracking and imaging cancer therapy in vivo and in situ.
Collapse
Affiliation(s)
- Xinwei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Jiahang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| |
Collapse
|
11
|
Fairhall JM, Murayasu M, Dadhwal S, Hook S, Gamble AB. Tuning activation and self-immolative properties of the bioorthogonal alkene–azide click-and-release strategy. Org Biomol Chem 2020; 18:4754-4762. [DOI: 10.1039/d0ob00936a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Combinations of aryl azides and trans-cyclooctenes have been studied in a bioorthogonal click-and-release strategy, with two reaction pairings rapidly releasing phenol at micromolar concentrations.
Collapse
Affiliation(s)
| | | | - Sumit Dadhwal
- School of Pharmacy
- University of Otago
- Dunedin
- New Zealand
| | - Sarah Hook
- School of Pharmacy
- University of Otago
- Dunedin
- New Zealand
| | | |
Collapse
|
12
|
Theranostic nanocomplex of gold-decorated upconversion nanoparticles for optical imaging and temperature-controlled photothermal therapy. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Liu G, Wold EA, Zhou J. Applications of Bioorthogonal Chemistry in Tumor-Targeted Drug Discovery. Curr Top Med Chem 2019; 19:892-897. [DOI: 10.2174/1568026619666190510091921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Gang Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Eric A. Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
14
|
Activity-based proteomic profiling: The application of photoaffinity probes in the target identification of bioactive molecules. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Abstract
Bioorthogonal reactions that proceed readily under physiological conditions without interference from biomolecules have found widespread application in the life sciences. Complementary to the bioorthogonal reactions that ligate two molecules, reactions that release a molecule or cleave a linker are increasingly attracting interest. Such dissociative bioorthogonal reactions have a broad spectrum of uses, for example, in controlling bio-macromolecule activity, in drug delivery, and in diagnostic assays. This review article summarizes the developed bioorthogonal reactions linked to a release step, outlines representative areas of the applications of such reactions, and discusses aspects that require further improvement.
Collapse
Affiliation(s)
- Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| | - Minghao Xu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| | - Raphael M Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
16
|
Pagel M. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry. J Pept Sci 2019; 25:e3141. [PMID: 30585397 DOI: 10.1002/psc.3141] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/05/2023]
Abstract
Click chemistry is applied to selectively modify, lable and ligate peptides for their use as therapeutics, in biomaterials or analytical investigations. The inverse electron demand Diels-Alder (IEDDA) reaction is a catalyst-free click reaction with pronounced chemoselectivity and fast reaction rates. Applications and achievements of the IEDDA reaction in peptide chemistry since 2008 are described in this review.
Collapse
Affiliation(s)
- Mareen Pagel
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Leipzig, Germany
| |
Collapse
|
17
|
Neumann K, Gambardella A, Bradley M. The Emerging Role of Tetrazines in Drug-Activation Chemistries. Chembiochem 2019; 20:872-876. [PMID: 30394615 DOI: 10.1002/cbic.201800590] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Traditionally, prodrug activation has been limited to enzymatic triggers or gross physiological aberrations, such as pH, that offer low selectivity and control over dosage. In recent years, the field of prodrug activation chemistry has been transformed by the use of bioorthogonal reactions that can be carried out under biological conditions at sub-millimolar concentrations, with the tetrazine-mediated inverse electron demand Diels-Alder reaction amongst the most recognised. Their high reaction rates, chemoselectivity and excellent biocompatibility make tetrazines ideal small molecules for activating prodrugs. Recently the tetrazine moiety has been used as a prodrug for a pyridazine thus broadening the scope of prodrug systems. This article discusses the concept of using tetrazines as small-molecule activators for prodrugs, and provides an overview of tetrazine-based prodrug systems, with a particular focus on the recently reported prodrug-prodrug activation strategy.
Collapse
Affiliation(s)
- Kevin Neumann
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.,Present address: Laboratory of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Alessia Gambardella
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Mark Bradley
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
18
|
Ji X, Pan Z, Yu B, De La Cruz LK, Zheng Y, Ke B, Wang B. Click and release: bioorthogonal approaches to “on-demand” activation of prodrugs. Chem Soc Rev 2019; 48:1077-1094. [PMID: 30724944 DOI: 10.1039/c8cs00395e] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review summarizes recent developments in using bioorthogonal chemistry in prodrug design for the delivery of traditional small molecule- and gasotransmitter-based therapeutics.
Collapse
Affiliation(s)
- Xingyue Ji
- Laboratory of Anesthesia and Critical Care Medicine
- Department of Anesthesiology
- Translational Neuroscience Center
- West China Hospital and State Key Laboratory of Biotherapy
- Sichuan University
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Yueqin Zheng
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine
- Department of Anesthesiology
- Translational Neuroscience Center
- West China Hospital and State Key Laboratory of Biotherapy
- Sichuan University
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| |
Collapse
|
19
|
On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. Commun Chem 2018. [DOI: 10.1038/s42004-018-0087-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
20
|
Jia X, Zhang Y, Zou Y, Wang Y, Niu D, He Q, Huang Z, Zhu W, Tian H, Shi J, Li Y. Dual Intratumoral Redox/Enzyme-Responsive NO-Releasing Nanomedicine for the Specific, High-Efficacy, and Low-Toxic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704490. [PMID: 29889325 DOI: 10.1002/adma.201704490] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 05/08/2018] [Indexed: 05/28/2023]
Abstract
Chemotherapy suffers numbers of limitations including poor drug solubility, nonspecific biodistribution, and inevitable adverse effects on normal tissues. Tumor-targeted delivery and intratumoral stimuli-responsive release of drugs by nanomedicines are considered to be highly promising in solving these problems. Compared with traditional chemotherapeutic drugs, high concentration of nitric oxide (NO) exhibits unique anticancer effects. The development of tumor-targeting and intratumoral microenvironment-responsive NO-releasing nanomedicines is highly desired. Here a novel kind of organic-inorganic composite nanomedicine (QM-NPQ@PDHNs) is presented by encapsulating a glutathione S-transferases π (GSTπ)-responsive drug O2 -(2,4-dinitro-5-{[2-(β-d-galactopyranosyl olean-12-en-28-oate-3-yl)-oxy-2-oxoethyl] piperazine-1-yl} phenyl) 1-(methylethanolamino)diazen-1-ium-1,2-dilate (NPQ) as NO donor and an aggregation-induced-emission (AIE) red fluorogen QM-2 into the cores of the hybrid nanomicelles (PEGylated disulfide-doped hybrid nanocarriers (PDHNs)) with glutathione (GSH)-responsive shells. The QM-NPQ@PDHN nanomedicine is able to respond to the intratumoral over-expressed GSH and GSTπ, resulting in the responsive biodegradation of the protective organosilica shell and NPQ release, and subsequent NO release within the tumor, respectively, and thus normal organs remain unaffected. This work demonstrates a paradigm of dual intratumoral redox/enzyme-responsive NO-release nanomedicine for tumor-specific and high-efficacy cancer therapy.
Collapse
Affiliation(s)
- Xiaobo Jia
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yu Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yao Wang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Dechao Niu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qianjun He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Weihong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai, 200237, China
| | - He Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai, 200237, China
| | - Jianlin Shi
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
21
|
Tu J, Xu M, Parvez S, Peterson RT, Franzini RM. Bioorthogonal Removal of 3-Isocyanopropyl Groups Enables the Controlled Release of Fluorophores and Drugs in Vivo. J Am Chem Soc 2018; 140:8410-8414. [DOI: 10.1021/jacs.8b05093] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Julian Tu
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Minghao Xu
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Saba Parvez
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Randall T. Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
22
|
Qin LH, Hu W, Long YQ. Bioorthogonal chemistry: Optimization and application updates during 2013–2017. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 2018; 46:4895-4950. [PMID: 28660957 DOI: 10.1039/c7cs00184c] [Citation(s) in RCA: 727] [Impact Index Per Article: 103.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.
Collapse
Affiliation(s)
- B L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Z Guo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - G J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-028, Portugal.
| |
Collapse
|
24
|
Robertson NM, Yang Y, Khan I, LaMantia VE, Royzen M, Yigit MV. Single-trigger dual-responsive nanoparticles for controllable and sequential prodrug activation. NANOSCALE 2017; 9:10020-10030. [PMID: 28682403 DOI: 10.1039/c7nr04138a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here we have developed a novel approach where two synergistically acting drugs were completely inactivated upon chemical immobilization on a nanoparticle template and activated in response to a chemical stimulus. The activation rate of each drug payload is controlled using a biologically inert bioorthogonal chemistry approach. By exploiting the subtle differences in the 'click-to-release' bioorthogonal reaction, we engineered a single delivery platform capable of releasing the payloads in a time-staggered manner in response to a single dose of a highly specific, yet reactive, small molecule. Incorporation of both di-axial, 'fast release', and di-equatorial, 'slow release', TCO linkers into our nanodrug assembly inhibited the activity of the drug molecules and enabled us to control the timing and activation of each payload. This single-trigger dual-responsive nanoparticle construct and its release kinetics were characterized using two molecular fluorescent probes and tested in vitro for efficient delivery of molecular payloads. In this manuscript we show that this approach was also successful in the treatment of triple negative BT-20 breast cancer cells. Our nanodrug loaded with the slow-releasing doxorubicin and fast-releasing PAC-1 prodrugs displayed a greater therapeutic response than the nanodrug which released both payloads simultaneously.
Collapse
Affiliation(s)
- Neil M Robertson
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Khan I, Seebald LM, Robertson NM, Yigit MV, Royzen M. Controlled in-cell activation of RNA therapeutics using bond-cleaving bio-orthogonal chemistry. Chem Sci 2017; 8:5705-5712. [PMID: 28989610 PMCID: PMC5621156 DOI: 10.1039/c7sc01380a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022] Open
Abstract
In vitro exogenous activation of siRNA nanodrug using bio-orthogonal de-click chemistry.
Temporal control of siRNA activation is a major challenge for RNAi-based therapeutics. The majority of the reported siRNA delivery systems rely on environmental factors, such as differences in extracellular and intracellular redox potential, ATP concentration, or pH to activate an siRNA payload. However dynamic endogenous environments are far too complex to rely on for controllable siRNA release and can result in premature siRNA activation prior to reaching the intended biological target. In addition, there are uncertainties about timing, degree and rate of the siRNA activation with spontaneous release approaches. Herein we describe a bio-orthogonal chemistry approach to address this important challenge. With our approach we were able achieve two major goals: complete siRNA inactivation upon immobilization of the payload on the surface of iron oxide nanoparticles and controlled in-cell activation with the addition of a small non-toxic chemical trigger after sufficient cellular uptake of the nanoparticles was confirmed. We have demonstrated our in-cell activation approach using two siRNAs against green fluorescent protein (GFP) and cyclin dependent kinase 8 (CDK8) in GFP expressing MDA-MB-231 cell line. We anticipate that this methodology will potentially advance the clinical translation of RNAi-based therapeutics, as the described bio-orthogonal chemistry can be generalized for any siRNA of choice.
Collapse
Affiliation(s)
- Irfan Khan
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| | - Leah M Seebald
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| | - Neil M Robertson
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| | - Mehmet V Yigit
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| | - Maksim Royzen
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| |
Collapse
|
26
|
Völker T, Meggers E. Chemical Activation in Blood Serum and Human Cell Culture: Improved Ruthenium Complex for Catalytic Uncaging of Alloc-Protected Amines. Chembiochem 2017; 18:1083-1086. [PMID: 28425643 DOI: 10.1002/cbic.201700168] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 01/20/2023]
Abstract
Chemical (as opposed to light-induced) activation of caged molecules is a rapidly advancing approach to trigger biological processes. We previously introduced the ruthenium-catalyzed release of allyloxycarbonyl (alloc)-protected amines in human cells. A restriction of this and all other methods is the limited lifetime of the catalyst, thus hampering meaningful applications. In this study, we addressed this problem with the development of a new generation of ruthenium complexes for the uncaging of alloc-protected amines with superior catalytic activity. Under biologically relevant conditions, we achieved a turnover number >300, a reaction rate of 580 m-1 s-1 , and we observed high activity in blood serum. Furthermore, alloc-protected doxorubicin, as an anticancer prodrug, could be activated in human cell culture and induced apoptosis with a single low dose (1 μm) of the new catalyst.
Collapse
Affiliation(s)
- Timo Völker
- Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Eric Meggers
- Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| |
Collapse
|
27
|
Abet V, Filace F, Recio J, Alvarez-Builla J, Burgos C. Prodrug approach: An overview of recent cases. Eur J Med Chem 2016; 127:810-827. [PMID: 27823878 DOI: 10.1016/j.ejmech.2016.10.061] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
Abstract
In this review we highlight the most modern trends in the prodrug strategy. In drug research and development, the prodrug concept has found a number of useful applications. Selected examples of this approach are provided in this paper and they are classified according to the aim of their design.
Collapse
Affiliation(s)
- Valentina Abet
- Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Fabiana Filace
- Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Javier Recio
- Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Julio Alvarez-Builla
- Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | - Carolina Burgos
- Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
28
|
Rossin R, van Duijnhoven SMJ, Ten Hoeve W, Janssen HM, Kleijn LHJ, Hoeben FJM, Versteegen RM, Robillard MS. Triggered Drug Release from an Antibody-Drug Conjugate Using Fast "Click-to-Release" Chemistry in Mice. Bioconjug Chem 2016; 27:1697-706. [PMID: 27306828 DOI: 10.1021/acs.bioconjchem.6b00231] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of a bioorthogonal reaction for the selective cleavage of tumor-bound antibody-drug conjugates (ADCs) would represent a powerful new tool for ADC therapy, as it would not rely on the currently used intracellular biological activation mechanisms, thereby expanding the scope to noninternalizing cancer targets. Here we report that the recently developed inverse-electron-demand Diels-Alder pyridazine elimination reaction can provoke rapid and self-immolative release of doxorubicin from an ADC in vitro and in tumor-bearing mice.
Collapse
Affiliation(s)
- Raffaella Rossin
- Tagworks Pharmaceuticals , High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | | | | | - Henk M Janssen
- SyMO-Chem , Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | | | - Freek J M Hoeben
- SyMO-Chem , Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | - Ron M Versteegen
- SyMO-Chem , Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | - Marc S Robillard
- Tagworks Pharmaceuticals , High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| |
Collapse
|
29
|
Liu H, Xie Y, Zhang Y, Cai Y, Li B, Mao H, Yu R. CA4-loaded doxorubicin prodrug coating Fe3O4 nanoparticles for tumor combination therapy. RSC Adv 2016. [DOI: 10.1039/c6ra24562e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fe3O4 nanoparticles (NPs) have attracted a great deal of attention due to their magnetic properties, low toxicity, high surface area and their small sizes.
Collapse
Affiliation(s)
- Hongmei Liu
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| | - Yandong Xie
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| | - Yafei Zhang
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| | - Yifan Cai
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| | - Baiyang Li
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| | - Honglin Mao
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| | - Rutong Yu
- Brain Hospital
- Affiliated Hospital of Xuzhou Medical University
- Xuzhou
- China
- Insititute of Nervous System Diseases
| |
Collapse
|