1
|
Lee E, Choi S, Zhao Y, Yu J. Open Linear Polymer Host-Guest Interactions Sensed by Luminescent Silver Nanodots. ACS Sens 2023; 8:3240-3247. [PMID: 37480154 DOI: 10.1021/acssensors.3c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
The selectivity of the linear polymer chain toward its binding moieties has been considered negligible; thus, a clear demonstration showing the best-fit binding of a linear polymer to its guest counterpart is still unknown. Luminescent poly(acrylic acid) (PAA)-stabilized silver nanodots (PAA-AgNDs) have been applied as a turn-on sensor to monitor the interaction between the PAA chain and its binding cations. The binding of cations ions to the PAA chain may cross-link the linear PAA chain via coordination with carboxylate, which increases the rigidity of the polymer chain, retards the nonradiative decay of PAA-AgNDs, and consequently enhances the emission of silver nanodots while inducing a blue-shift of its emission spectrum. For the first time, we have demonstrated that a linear polymer chain can act as an open host to selectively bind to its best-matching cations. Specifically, among Group 2 cations (Mg2+, Ca2+, Sr2+, Ba2+), calcium ions show the strongest bonding to the PAA polymer chain. Our research suggests that, with extra rigidity, the polymer improves its chemical stability as calcium ions cross-linked the linear polymer. Meanwhile, it has also been demonstrated that luminescent silver nanodots can be excellent probes for the detection of polymer activities with straightforward and simple visualization methods.
Collapse
Affiliation(s)
- Eunhye Lee
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungmoon Choi
- Center for Educational Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Yanlu Zhao
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Junhua Yu
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea
- Department of Science Education, Science Education Research Center, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Multistep sequence-controlled supramolecular polymerization by the combination of multiple self-assembly motifs. iScience 2023; 26:106023. [PMID: 36818297 PMCID: PMC9932128 DOI: 10.1016/j.isci.2023.106023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/25/2022] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The precise sequence control of polymer chain is an important research topic of polymer chemistry. Although some methods such as iterative synthesis and supramolecular polymerization have been developed to fabricate sequence-controllable polymer, it is still a great challenge to consecutively prepare multiple supramolecular polymers with different sequence structures. In this work, through the reasonable utilization of assembly motifs, we integrated multiple host-guest recognitions and metal coordination interactions to prepare different sequence-controlled supramolecular polymers by a multistep assembly strategy. This research provides inspiration for the design and preparation of supramolecular polymers with different sequence structures.
Collapse
|
3
|
One‐Pot Structure‐Controlled Synthesis of Hyperbranched Polymers by a “Latent” Inimer Strategy Based on Diels–Alder Chemistry. Angew Chem Int Ed Engl 2022; 61:e202211713. [DOI: 10.1002/anie.202211713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 11/07/2022]
|
4
|
Liu Z, Li B, Song L, Zhang H. Pillar[ n]arene-calix[ m]arene hybrid macrocyclic structures. RSC Adv 2022; 12:28185-28195. [PMID: 36320255 PMCID: PMC9528731 DOI: 10.1039/d2ra05118d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023] Open
Abstract
To reserve planar chirality, enhance molecular recognition, and build advanced self-assemblies, hybrid macrocyclic hosts containing rigid pillar[n]arene and flexible calix[m]arene were designed, prepared and investigated for interesting applications. This review summarizes and discusses different synthetic strategies for constructing hybrid macrocyclic structures. Pillar[n]arene dimer with rigid aromatic double bridges provided the possibility of introducing calix[m]arene cavities, where the planar chirality was reserved in the structure of pillararene. The capacity for molecular recognition was enhanced by hybrid macrocyclic cavities. Interestingly, the obtained pillar[n]arene-calix[m]arene could self-assemble into "channels" and "honeycomb" in both the solid state and solution phase as well as donate the molecular architecture as the wheel for the formation of mechanically interlocked molecules, such as rotaxane. In addition, the pillar[n]arene and calix[m]arene could also be coupled together to produce pillar[n]arene embeded 1,3-alternate and cone conformational calix[m]arene derivatives, which could catalyze the oxidative polymerization of aniline in aqueous solutions. Except for building hybrid cyclophanes by covalent bonds, weak supramolecular interactions were used to prepare pillar[n]arene-calix[m]arene analogous composites with other pillar-like pillar[n]pyridiniums and calix-like calix[m]pyrroles, exhibiting reasonable performances in enhancing molecular recognition and trapping solvent molecules.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi'an Peihua University Xi'an 710125 Shaanxi China
| | - Bing Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Leqian Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
5
|
Yang N, Jiang Y, Tan Q, Ma J, Zhan D, Wang Z, Wang X, Zhang D, Hadjichristidis N. One‐Pot Structure‐Controlled Synthesis of Hyperbranched Polymers by a "Latent" Inimer Strategy Based on Diels‐Alder Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neng Yang
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science CHINA
| | - Yu Jiang
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science Minzu Road Wuhan CHINA
| | - Qinwen Tan
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science CHINA
| | - Jiahui Ma
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science CHINA
| | - Dezhi Zhan
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science CHINA
| | - Zhaohong Wang
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science CHINA
| | - Xin Wang
- KAUST: King Abdullah University of Science and Technology KAUST Catalysis Center CHINA
| | - Daohong Zhang
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science CHINA
| | - Nikos Hadjichristidis
- KAUST: King Abdullah University of Science and Technology KAUST Catalysis Center CHINA
| |
Collapse
|
6
|
Cai L, Lin J, Qiao M, Guo J, Zhang H, Liu S, Jia Y. Multi‐regulation of Aggregation‐induced Emission (AIE) via a Competitive Host‐guest Recognition and
α
‐amylase Hydrolyzing. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lili Cai
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Jiawei Lin
- School of Materials Science and Engineering South China University of Technology Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Mingyu Qiao
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Jianwei Guo
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Sa Liu
- School of Materials Science and Engineering South China University of Technology Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Yong‐Guang Jia
- School of Materials Science and Engineering South China University of Technology Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| |
Collapse
|
7
|
Cai L, Zhang H, Guo J, Liu S, Jia YG. Polypseudorotaxanes Derived from Tetraphenylethylene: Preparation and Tandem-Activated Aggregation-Induced Emission. Biomacromolecules 2021; 22:2248-2255. [PMID: 33866788 DOI: 10.1021/acs.biomac.1c00328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuning the fluorescence of aggregation-induced emission (AIE)-based materials in a reversible way is essential and a requisite for their applications. The multiple host-guest interactions of polypseudorotaxanes (PPRs) could alter the aggregation state of hydrophobic AIE-based polymeric materials and consequently switch the fluorescence. Herein, tetraphenylethylene (TPE) as a typical AIE molecule has been incorporated into the main chains of the guest polyurethane via a step condensation between poly(ethylene glycol) (PEG)-based dicarbonate and TPE-diamine along with the cleavable disulfide bonds. γ-Cyclodextrins (γ-CDs) can selectively recognize the TPE units at the polyurethane chains to afford a PPR. Hydrophilic PEG segments and γ-CD molecules in the PPR could promote the disaggregation of TPE units, suppressing the fluorescence emission of TPE. To restore the aggregated state and fluorescence of TPE units, tris(2-carboxyethyl)phosphine (TCEP) and α-amylase are sequentially introduced to cleave the disulfide bonds and cut α-1,4 glycosidic bonds of γ-CD, reactivating the AIE behavior of PPR tandemly and accomplishing the reversible cycle of tuning the fluorescence of TPE. The present study provides a tandem way to switch the AIE behavior of polymeric materials reversibly.
Collapse
Affiliation(s)
- Lili Cai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianwei Guo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Padilla-Coley S, Xu H, Morsby J, Gao H, Smith BD. Supramolecular Loading of a Broad Spectrum of Molecular Guests In Hyperbranched Polytriazole Nanoparticles with Cores Containing Multiple Functional Groups. Biomacromolecules 2020; 21:2165-2175. [PMID: 32227988 DOI: 10.1021/acs.biomac.0c00151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study evaluated the supramolecular properties of a new family of water-soluble hyperbranched polytriazoles that have a unimolecular micelle structure. Two new, structurally related hyperbranched polymers (HBPa and HBPn), with the same size (Dh = 11 nm) and core-shell architecture, were prepared and found to act as nanoscale hosts for a broad spectrum of molecular guests. The globular-shaped hyperbranched polymers were synthesized by a straightforward one-pot polymerization method that permits easy synthetic control of the multiple functional groups within the core. Surrounding the core is a shell of polyethylene glycol chains that promotes solubility in pH 7.4 buffer solution and inhibits self-aggregation of the nanoparticles. The core of HBPa, containing a mixture of anionic carboxylate groups and 1,2,3-triazole rings, could be loaded with cationic hydrophilic (i.e., propidium iodide) or partially hydrophobic (i.e., Hoechst 33342) dyes or drugs, including a binary dye/drug pair (i.e., indocyanine green/mitoxantrone). The core of HBPn, containing a mixture of uncharged 2-pentanone chains and 1,2,3-triazole rings, could be loaded with uncharged and very hydrophobic dyes (i.e., Nile Red) or drugs. Improved aqueous solubility of camptothecin was achieved 10-fold from 8.4 to 75 ng/mL. Additionally, cell toxicity studies showed that HBPn was able to release the camptothecin drug inside A549 cancer cells resulting in increased cell death. Taken together, the results suggest that this new family of water-soluble hyperbranched polytriazoles could be broadly useful as nanocarriers for various applications in therapy, imaging, or a combination of the two (theranostics).
Collapse
Affiliation(s)
- Sasha Padilla-Coley
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Hui Xu
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Janeala Morsby
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Liu C, Li H, Li P, Liu C, Bai Y, Pang J, Wang J, Tian W. A dual drug-based hyperbranched polymer with methotrexate and chlorambucil moieties for synergistic cancer chemotherapy. Polym Chem 2020; 11:5810-5818. [DOI: 10.1039/d0py00862a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Dual drug-based hyperbranched polymer micelles simultaneously containing methotrexate and chlorambucil were constructed for synergistic cancer chemotherapy.
Collapse
Affiliation(s)
- Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an
| | - Huixin Li
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an
| | - Pengxiang Li
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an
| | - Caiping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Jun Pang
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an
| | - Jingxia Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
10
|
Jin X, Zhu L, Xue B, Zhu X, Yan D. Supramolecular nanoscale drug-delivery system with ordered structure. Natl Sci Rev 2019; 6:1128-1137. [PMID: 34691991 PMCID: PMC8291525 DOI: 10.1093/nsr/nwz018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/19/2023] Open
Abstract
Supramolecular chemistry provides a means to integrate multi-type molecules leading to a dynamic organization. The study of functional nanoscale drug-delivery systems based on supramolecular interactions is a recent trend. Much work has focused on the design of supramolecular building blocks and the engineering of supramolecular integration, with the goal of optimized delivery behavior and enhanced therapeutic effect. This review introduces recent advances in supramolecular designs of nanoscale drug delivery. Supramolecular affinity can act as a main driving force either in the self-assembly of carriers or in the loading of drugs. It is also possible to employ strong recognitions to achieve self-delivery of drugs. Due to dynamic controllable drug-release properties, the supramolecular nanoscale drug-delivery system provides a promising platform for precision medicine.
Collapse
Affiliation(s)
- Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bai Xue
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Novel designed TFC membrane based on host-guest interaction for organic solvent nanofiltration (OSN). J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117227] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Cao Z, Li D, Wang J, Xiong M, Yang X. Direct Nucleus-Targeted Drug Delivery Using Cascade pH e /Photo Dual-Sensitive Polymeric Nanocarrier for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902022. [PMID: 31318147 DOI: 10.1002/smll.201902022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
The cell nucleus-targeted delivery of therapeutic agents plays a critical role in cancer therapy, since the biological target of many anticancer therapeutics is the cell nucleus. However, multiple physiological barriers limit the delivery efficiency of free drugs, resulting in unsatisfactory therapeutic effects. Herein, thioketal crosslinked polyphosphoester-based nanoparticles with a tumor acidity (pHe )-sensitive transactivator of transcription (TAT) peptide (DA-masked TAT-decorating reactive oxygen species (ROS)-sensitive Ce6/DOX-loaded hyperbranched nanoparticles (D TRCD)) are explored for cascade nucleus-targeted drug delivery. Following administration, D TRCD experiences prolonged circulation by masking the targeting effect of its TAT peptide and then achieves enhanced tumor cell uptake and improved translocation into the perinuclear region by reactivating the TAT targeting capability in tumor tissue. Subsequently, ROS generated by D TRCD under 660 nm laser not only disrupts the nuclear membrane to allow entry into the nuclei but also triggers intracellular release of the payload in the nuclei. As evidenced by in vivo experiments, such pHe /photo dual-sensitive polymeric nanocarriers offer remarkable therapeutic effects, efficiently suppressing tumor growth. This multistage cascade nucleus-targeted drug delivery concept provides new avenues to develop nucleus-targeted drug delivery systems.
Collapse
Affiliation(s)
- Ziyang Cao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Dongdong Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Junxia Wang
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Menghua Xiong
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China
| |
Collapse
|
13
|
Applications of macrocyclic compounds for electrochemical sensors to improve selectivity and sensitivity. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00934-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Huang YH, Jin XY, Yan S, Cong H, Tao Z. Size Effect of Multifarenes on Host-Guest Interactions with Naphthylamines and Naphthols. ChemistrySelect 2018. [DOI: 10.1002/slct.201800812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yin-Hui Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province; Guizhou University; Guiyang 550025 China
| | - Xian-Yi Jin
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province; Guizhou University; Guiyang 550025 China
| | - Shan Yan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province; Guizhou University; Guiyang 550025 China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province; Guizhou University; Guiyang 550025 China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province; Guizhou University; Guiyang 550025 China
| |
Collapse
|