1
|
Wongsing B, Prakobkij A, Anutrasakda W, Jarujamrus P. Vanadium-Doped Porous Cobalt Oxide for Its Superior Peroxidase-like Activity in Simultaneous Total Cholesterol and Glucose Determination in Whole Blood Based on a Simple Two-Dimensional Paper-Based Analytical Device. Anal Chem 2022; 94:13785-13794. [PMID: 36153983 DOI: 10.1021/acs.analchem.2c02280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vanadium-doped porous Co3O4 (V-porous Co3O4) was synthesized via a simple soft-templating method and used as a superior peroxidase mimic for the simultaneous colorimetric determination of glucose and total cholesterol (TC) in whole blood samples on a two-dimensional microfluidic paper-based analytical device (2D-μPAD). The large surface area and the presence of two metals in V-porous Co3O4 contributed to its excellent catalytic activity toward 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 3,3',5,5'- tetramethylbenzidine (TMB) with Michaelis-Menten constants (KM) of 0.1301 and 0.0141 mM, respectively. The 2D-μPAD was fabricated using simple wax screen-printing and cutting techniques. The colorimetric reactions of both glucose and TC on 2D-μPAD were simultaneously performed by adding a single drop of a whole blood sample on the sample zone made of the LF1 membrane. After the enzymatic reactions, the generated hydrogen peroxide (H2O2) was oxidized by V-porous Co3O4 to produce hydroxy radicals (•OH), inducing ABTS and TMB to generate colored products. The generated H2O2 was proportional to the intensities of the green and blue products of the glucose and TC systems, respectively. The developed 2D-μPAD required a short analysis time (∼5 min) with small volumes of samples (15 μL of whole blood) whereby no sample preparation was needed. Owing to several advantages including simplicity, low cost, long-term stability, and simultaneous readout, the novel V-porous Co3O4 coupled with 2D-μPAD proved to be promising for practical uses as a pioneering portable device for the determination of glucose, TC, and other important biomarkers without the need of technical supports.
Collapse
Affiliation(s)
- Budsakorn Wongsing
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.,Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathan 34190, Thailand
| | - Akarapong Prakobkij
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.,Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathan 34190, Thailand
| | - Wipark Anutrasakda
- Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Payathai Road, Patumwan Bangkok, 10330, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.,Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathan 34190, Thailand
| |
Collapse
|
2
|
Sun S, Wang Y, Chen L, Chu M, Dong Y, Liu D, Liu P, Qu D, Duan J, Li X. MOF(Ni)/CNT composites with layer structure for high capacitive performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Sun Y, Zhang J, Liu S, Sun X, Huang N. An enhancement on supercapacitor properties of porous CoO nanowire arrays by microwave-assisted regulation of the precursor. NANOTECHNOLOGY 2021; 32:195707. [PMID: 33530071 DOI: 10.1088/1361-6528/abe264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A microwave-assisted hydrothermal approach with a follow up thermal treatment was employed to prepare 1D porous CoO nanowires, which is constructed by numerous high crystallinity nanoparticles. A significant change in crystal structure of the precursor were observed, as position shift and absence of some diffraction peaks, which was induced by the microwave-assistance during hydrothermal process. Moreover, the precursor's purity was also effectively improved. As a result, the as-synthesized CoO annealed from the microwave-assisted precursor exhibited a morphology and phase structure significantly different from that of without microwave involvement. Benefiting from the 'microwave effect', the microwave-assisted as-fabricated porous CoO nanowires showed an enhanced specific capacitance (728.8 versus 503.7 F g-1 at 1 A g-1 ), strengthened rate performance (70.0% versus 53.2% maintenance at 15 A g-1), reduced charge transfer resistance (1.06 Ω versus 2.39 Ω), enlarged window voltage (0.85 versus 0.7 V) and enhanced cycle performance (82.3% versus 76.5% retention after 5000 cycles at 15 A g-1), compared with that of sample without microwave assistance. In addition, the corresponding electrochemical properties are also higher than those reported CoO sample prepared by solvothermal method. In conclusion, this work provides a practical way for enhancing electrochemical properties of supercapacitor materials through adjusting the precursor by microwave assistance into hydrothermal process.
Collapse
Affiliation(s)
- Yin Sun
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Junjie Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Sen Liu
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Xiannian Sun
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Naibao Huang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| |
Collapse
|
4
|
Xu X, Feng Y, Chen Z, Wang S, Wu G, Huang T, Ma J, Wen G. Activation of peroxymonosulfate by CuCo2O4-GO for efficient degradation of bisphenol A from aqueous environment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Ma K, Liu F, Yuan YF, Liu XQ, Wang J, Xie J, Cheng JP. CoO microspheres and metallic Co evolved from hexagonal α-Co(OH) 2 plates in a hydrothermal process for lithium storage and magnetic applications. Phys Chem Chem Phys 2018; 20:595-604. [PMID: 29226920 DOI: 10.1039/c7cp06868a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CoO microspheres and metallic Co could be successfully synthesized by simply reacting cobalt acetate with a mixture solvent of ethylene glycol and deionized water in a hydrothermal process for different times. As the reaction proceeded, α-Co(OH)2, CoO and metallic Co were produced. To understand the phase evolution processes from α-Co(OH)2 to CoO and then metallic Co, a range of time-dependent experiments were carried out, and the intermediate products obtained at different reaction times were investigated in detail. The investigation revealed that CoO microspheres were actually evolved from α-Co(OH)2 as a precursor. Just elongating the reaction time, CoO microspheres could be further reduced to metallic Co. With a pure ethylene glycol medium for the same reaction, only α-Co(OH)2 could be generated, indicating an important role of water. When the obtained CoO microspheres were used as anode materials for lithium-ion batteries, they delivered a specific capacity of 803 mA h g-1 at 0.1 A g-1 with a retention of 453 mA h g-1 after 70 cycles. Meanwhile, the magnetic properties of the obtained CoO microspheres and metallic Co were investigated, with the CoO microspheres showing an antiferromagnetic behavior and the metallic Co exhibiting ferromagnetic characteristics. This study suggested a novel method for synthesizing CoO with a uniform microsphere morphology and bulk metallic Co easily.
Collapse
Affiliation(s)
- KeYuan Ma
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Li B, Sun Q, Fan H, Cheng M, Shan A, Cui Y, Wang R. Morphology-Controlled Synthesis of Hematite Nanocrystals and Their Optical, Magnetic and Electrochemical Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E41. [PMID: 29342929 PMCID: PMC5791128 DOI: 10.3390/nano8010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
A series of α-Fe₂O₃ nanocrystals (NCs) with fascinating morphologies, such as hollow nanoolives, nanotubes, nanospindles, and nanoplates, were prepared through a simple template-free hydrothermal synthesis process. The results showed that the morphologies could be easily controlled by SO₄2- and H₂PO₄-. Physical property analysis showed that the α-Fe₂O₃ NCs exhibited shape- and size-dependent ferromagnetic and optical behaviors. The absorption band peak of the α-Fe₂O₃ NCs could be tuned from 320 to 610 nm. Furthermore, when applied as electrode material for supercapacitor, the hollow olive-structure exhibited the highest capacitance (285.9 F·g-1) and an excellent long-term cycling stability (93% after 3000 cycles), indicating that it could serve as a candidate electrode material for a supercapacitor.
Collapse
Affiliation(s)
- Bangquan Li
- Department of Physics, Beihang University, Beijing 100191, China.
- Institute of Solid State Physics, Shanxi Datong University, Datong 037009, China.
| | - Qian Sun
- Beijing Institute of Space Mechanics and Electricity, Beijing 100094, China.
| | - Hongsheng Fan
- Department of Physics, Beihang University, Beijing 100191, China.
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Ming Cheng
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Aixian Shan
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yimin Cui
- Department of Physics, Beihang University, Beijing 100191, China.
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
7
|
Cheng M, Fan H, Xu Y, Wang R, Zhang X. Hollow Co 2P nanoflowers assembled from nanorods for ultralong cycle-life supercapacitors. NANOSCALE 2017; 9:14162-14171. [PMID: 28905069 DOI: 10.1039/c7nr04464j] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hollow Co2P nanoflowers (Co2P HNFs) were successfully prepared via a one-step, template-free method. Microstructure analysis reveals that Co2P HNFs are assembled from nanorods and possess abundant mesopores and an amorphous carbon shell. Density functional theory calculations and electrochemical measurements demonstrate the high electrical conductivity of Co2P. Benefiting from the unique nanostructures, when employed as an electrode material for supercapacitors, Co2P HNFs exhibit a high specific capacitance, an outstanding rate capability, and an ultralong cycling stability. Furthermore, the constructed Co2P HNF//AC ASC exhibits a high energy density of 30.5 W h kg-1 at a power density of 850 W kg-1, along with a superior cycling performance (108.0% specific capacitance retained after 10 000 cycles at 5 A g-1). These impressive results make Co2P HNFs a promising candidate for supercapacitor applications.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Physics, Beihang University, Beijing 100191, P. R. China
| | | | | | | | | |
Collapse
|
8
|
Chen X, Chen D, Guo X, Wang R, Zhang H. Facile Growth of Caterpillar-like NiCo 2S 4 Nanocrystal Arrays on Nickle Foam for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18774-18781. [PMID: 28497684 DOI: 10.1021/acsami.7b03254] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Ternary cobalt nickel sulfide as a novel and efficient electrode material in supercapacitors has recently gained extensive interests. Herein, we first report a highly conductive caterpillar-like NiCo2S4, composed of NiCo2S4 nanosheet core and nanowire shell grown on Ni foam via a facile and cost-effective chemical liquid process. Growth mechanism of the NiCo2S4 nanosheets@nanowires (NSNWs) structure was also investigated in detail by analyzing time-dependent experimental as well as the amount of additive ammonium fluoride in solution. Furthermore, the electrochemical measurements were performed among three different morphologies of NiCo2S4 including nanosheets, nanosheets@nanoparticles, and NSNWs structure, which were obtained from different reaction stages. Because the NSNWs structure has relatively high electroactive surface area, conductivity, and effective electron transport pathways, the as-prepared NiCo2S4 NSNWs structure comparing with two other morphologies exhibits the maximum specific capacity of 1777 F/g at 1 A/g and the highest capacitance retention (83% after 3000 cycles) at a high scan rate of 10 A/g with a mass loading density of 4.0 mg/cm2. These results indicate that the NiCo2S4 NSNWs structure has great potential in supercapacitors.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Department of Physics, Beihang University , Beijing 100191, P. R. China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing , Beijing 100083, P. R. China
- School of Physics & CRANN, Trinity College Dublin , Dublin, Ireland
| | - Di Chen
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing , Beijing 100083, P. R. China
| | - Xuyun Guo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing , Beijing 100083, P. R. China
| | - Hongzhou Zhang
- School of Physics & CRANN, Trinity College Dublin , Dublin, Ireland
| |
Collapse
|
9
|
Cheng M, Fan H, Song Y, Cui Y, Wang R. Interconnected hierarchical NiCo2O4 microspheres as high-performance electrode materials for supercapacitors. Dalton Trans 2017; 46:9201-9209. [DOI: 10.1039/c7dt01289f] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hierarchical NiCo2O4 microspheres with large tunnels and abundant mesopores have been prepared, and they exhibit excellent performance in supercapacitor applications.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Physics
- Beihang University
- Beijing 100191
- P. R. China
| | - Hongsheng Fan
- Department of Physics
- Beihang University
- Beijing 100191
- P. R. China
| | - Yuanjun Song
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science
- School of Mathematics and Physics
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Yimin Cui
- Department of Physics
- Beihang University
- Beijing 100191
- P. R. China
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science
- School of Mathematics and Physics
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| |
Collapse
|