1
|
Wu X, Liu Y. Predicting Gas Adsorption without the Knowledge of Pore Structures: A Machine Learning Method Based on Classical Density Functional Theory. J Phys Chem Lett 2023; 14:10094-10102. [PMID: 37921618 DOI: 10.1021/acs.jpclett.3c02708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Predicting gas adsorption from the pore structure is an intuitive and widely used methodology in adsorption. However, in real-world systems, the structural information is usually very complicated and can only be approximately obtained from the characterization data. In this work, we developed a machine learning (ML) method to predict gas adsorption form the raw characterization data of N2 adsorption. The ML method is modeled by a convolutional neural network and trained by a large number of data that are generated from a classical density functional theory, and the model gives a very accurate prediction of Ar adsorption. Though the training set is limited to modeling slit pores, the model can be applied to three-dimensional structured pores and real-world materials. The good agreements suggest that there is a universal relationship among adsorption isotherms of different adsorbates, which could be captured by the ML model.
Collapse
Affiliation(s)
- Xiangkun Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yu Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
2
|
Zeng F, Wan R, Xiao Y, Song F, Peng C, Liu H. Predicting the Self-Diffusion Coefficient of Liquids Based on Backpropagation Artificial Neural Network: A Quantitative Structure–Property Relationship Study. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fazhan Zeng
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Ren Wan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Yongjun Xiao
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Fan Song
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Changjun Peng
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Honglai Liu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| |
Collapse
|
3
|
Tang W, Yu H, Zhao T, Qing L, Xu X, Zhao S. A dynamic reaction density functional theory for interfacial reaction-diffusion coupling at nanoscale. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Abstract
AbstractNanoporous solids are ubiquitous in chemical, energy, and environmental processes, where controlled transport of molecules through the pores plays a crucial role. They are used as sorbents, chromatographic or membrane materials for separations, and as catalysts and catalyst supports. Defined as materials where confinement effects lead to substantial deviations from bulk diffusion, nanoporous materials include crystalline microporous zeotypes and metal–organic frameworks (MOFs), and a number of semi-crystalline and amorphous mesoporous solids, as well as hierarchically structured materials, containing both nanopores and wider meso- or macropores to facilitate transport over macroscopic distances. The ranges of pore sizes, shapes, and topologies spanned by these materials represent a considerable challenge for predicting molecular diffusivities, but fundamental understanding also provides an opportunity to guide the design of new nanoporous materials to increase the performance of transport limited processes. Remarkable progress in synthesis increasingly allows these designs to be put into practice. Molecular simulation techniques have been used in conjunction with experimental measurements to examine in detail the fundamental diffusion processes within nanoporous solids, to provide insight into the free energy landscape navigated by adsorbates, and to better understand nano-confinement effects. Pore network models, discrete particle models and synthesis-mimicking atomistic models allow to tackle diffusion in mesoporous and hierarchically structured porous materials, where multiscale approaches benefit from ever cheaper parallel computing and higher resolution imaging. Here, we discuss synergistic combinations of simulation and experiment to showcase theoretical progress and computational techniques that have been successful in predicting guest diffusion and providing insights. We also outline where new fundamental developments and experimental techniques are needed to enable more accurate predictions for complex systems.
Collapse
|
5
|
Zhao T, Qing L, Long T, Xu X, Zhao S, Lu X. Dynamical coupling of ion adsorption with fluid flow in nanopores. AIChE J 2021. [DOI: 10.1002/aic.17266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Teng Zhao
- State Key laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Leying Qing
- State Key laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Ting Long
- State Key laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Xiaofei Xu
- State Key laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Shuangliang Zhao
- State Key laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Xiaohua Lu
- College of Chemical Engineering, State Key Laboratory of Materials‐oriented Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
6
|
|
7
|
Hong D, Liu Y, Liu H, Hu Y. Development of
dual‐model
classical density functional theory and its application to gas adsorption in porous materials. AIChE J 2021. [DOI: 10.1002/aic.17120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dandan Hong
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| | - Yu Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
- School of Chemical Engineering and Technology Sun Yat‐sen University Zhuhai China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| | - Ying Hu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
8
|
Multiscale mechanisms of reaction-diffusion process in electrode systems: A classical density functional study. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Liu Y, Liu H. Development of reaction–diffusion DFT and its application to catalytic oxidation of NO in porous materials. AIChE J 2019. [DOI: 10.1002/aic.16824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yu Liu
- School of Chemical Engineering and Technology Sun Yat‐sen University Zhuhai China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
10
|
Liu Y, Guo F, Hu J, Liu H, Hu Y. Time-dependent density functional theory for the freezing/melting transition in interfacial systems. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Niu Y, Liu Y, Liu H, Hu Y. Time‐dependent density functional study for nanodroplet coalescence. AIChE J 2019. [DOI: 10.1002/aic.16810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yapeng Niu
- State Key Laboratory of Advanced Materials and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| | - Yu Liu
- State Key Laboratory of Advanced Materials and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
- School of Chemical Engineering and Technology, Sun Yat‐Sen University Zhuhai China
| | - Honglai Liu
- State Key Laboratory of Advanced Materials and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| | - Ying Hu
- State Key Laboratory of Advanced Materials and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
12
|
Sun Z, Kang Y, Kang Y. Density Functional Study on Enhancement of Modulus of Confined Fluid in Nanopores. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zongli Sun
- Science and Technology College, North China Electric Power University, Baoding 071051, P. R. China
| | - Yanshuang Kang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yanmei Kang
- University of International Relations, Beijing 100091, P. R. China
| |
Collapse
|
13
|
Guo F, Liu Y, Hu J, Liu H, Hu Y. Fast screening of porous materials for noble gas adsorption and separation: a classical density functional approach. Phys Chem Chem Phys 2018; 20:28193-28204. [PMID: 30395136 DOI: 10.1039/c8cp03777a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The design and screening of porous materials for noble gas adsorption and separation are an important issue in the production and utilization of gases. The conventional method to do this is via molecular simulation. In this work, we introduced a classical density functional theory (CDFT) to replace molecular simulation because CDFT is more efficient. A molecular dynamics (MD)/CDFT combined method was proposed to consider the flexibility of the adsorbent. The theory was first examined by comparing it to reported experiments and simulations. Then, the theory was applied to determine the most favorable adsorbents for noble gas adsorption/separation from 4764 real adsorbents and 1200 hypothetical adsorbents. A series of favorable adsorbents was identified, and some of them seemed promising. The macroscopic adsorption isotherms and microscopic density profiles of the most favorable adsorbents were examined, and the adsorption mechanisms were revealed. The specific separation of Kr/Xe was examined, and two of the adsorbents showed higher adsorption efficiency than shown in previously reported data.
Collapse
Affiliation(s)
- Fangyuan Guo
- State Key Laboratory of Chemical Engineering and School of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | |
Collapse
|
14
|
Liu Y, Liu H. Time-dependent density functional theory for fluid diffusion in graphene oxide membranes/graphene membranes. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Liu Y, Liu H. Development of 3D polymer DFT and its application to molecular transport through a surfactant-covered interface. AIChE J 2017. [DOI: 10.1002/aic.15858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
16
|
Liu Y, Guo F, Hu J, Liu H, Hu Y. Molecular transport through mixed matrix membranes: A time-dependent density functional approach. AIChE J 2017. [DOI: 10.1002/aic.15805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Fangyuan Guo
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Jun Hu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Ying Hu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|