1
|
Singh A, Iguchi A, Bernaards TC, Golpariani Z, Mizuse K, Fujii A, Tanuma H, Azuma T, Kuma S, Vilesov A. Infrared Spectroscopy of Radical Cation Clusters (NH 3) 2+ and (NH 3) 3. J Phys Chem A 2025; 129:2472-2481. [PMID: 40009547 DOI: 10.1021/acs.jpca.4c08362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The ionization of protic molecules such as H2O and NH3 in the condensed phase initiates ion-molecule reactions, which remain poorly understood. Studies of the structure and reactivity of small ionic clusters in molecular beams have yielded a wealth of information on protonated clusters. However, unprotonated radical cation clusters have a low concentration in a typical experiment and thus remain challenging. Here we report the infrared spectra of the (NH3)2+ and (NH3)3+ radical cations solvated in helium nanodroplets. Radical cation clusters often have several isomers with different ionic cores, including proton-transferred and hemibonded structures. Infrared spectra of the cations obtained in this work indicate that the formation of the ammonia dimer ((NH3)2+) and trimer ((NH3)3+) cations yields the proton-transferred structures, which correspond to the respective global minima of the calculated structures. Spectral assignments are corroborated by density functional theory calculations. The spectra also indicate that the NH4+ and NH3 moieties within the clusters undergo internal rotation with rotational constants close to those in the gas phase.
Collapse
Affiliation(s)
- Amandeep Singh
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Arisa Iguchi
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
- Atomic, Molecular, and Optical Physics Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Tom C Bernaards
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Zane Golpariani
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Kenta Mizuse
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hajime Tanuma
- Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Toshiyuki Azuma
- Atomic, Molecular, and Optical Physics Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Susumu Kuma
- Atomic, Molecular, and Optical Physics Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Andrey Vilesov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Ovad T, Sapunar M, Sršeň Š, Slavíček P, Mašín Z, Jones NC, Hoffmann SV, Ranković M, Fedor J. Excitation and fragmentation of the dielectric gas C 4F 7N: Electrons vs photons. J Chem Phys 2023; 158:014303. [PMID: 36610949 DOI: 10.1063/5.0130216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
C4F7N is a promising candidate for the replacement of sulfur hexafluoride as an insulating medium, and it is important to understand the chemical changes initiated in the molecule by collision with free electrons, specifically the formation of neutral fragments. The first step of neutral fragmentation is electronic excitation, yet neither the absorption spectrum in the vacuum ultraviolet (VUV) region nor the electron energy loss spectrum have previously been reported. Here, we experimentally probed the excited states by VUV photoabsorption spectroscopy and electron energy loss spectroscopy (EELS). We found that the distribution of states populated upon electron impact with low-energy electrons is significantly different from that following photoabsorption. This difference was confirmed and interpreted with ab initio modeling of both VUV and EELS spectra. We propose here a new computational protocol for the simulation of EELS spectra combining the Born approximation with approximate forms of correlated wave functions, which allows us to calculate the (usually very expensive) scattering cross sections at a cost similar to the calculation of oscillator strengths. Finally, we perform semi-classical non-adiabatic dynamics simulations to investigate the possible neutral fragments of the molecule formed through electron-induced neutral dissociation. We show that the product distribution is highly non-statistical.
Collapse
Affiliation(s)
- Tomáš Ovad
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Czech Republic
| | - Marin Sapunar
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Czech Republic
| | - Štěpán Sršeň
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Czech Republic
| | - Zdeněk Mašín
- Faculty of Mathematics and Physics, Charles University, Institute of Theoretical Physics, V Holešovičkách 2, 18000 Prague, Czech Republic
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Miloš Ranković
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, Prague 8, Czech Republic
| | - Juraj Fedor
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, Prague 8, Czech Republic
| |
Collapse
|
3
|
Zhou J, Belina M, Jia S, Xue X, Hao X, Ren X, Slavíček P. Ultrafast Charge and Proton Transfer in Doubly Ionized Ammonia Dimers. J Phys Chem Lett 2022; 13:10603-10611. [PMID: 36350084 DOI: 10.1021/acs.jpclett.2c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We investigate the ultrafast energy and charge transfer processes between ammonia molecules following ionization reactions initiated by electron impact. Exploring ionization-induced processes in molecular clusters provides us with a detailed insight into the dynamics using experiments in the energy domain. We ionize the ammonia dimer with 200 eV electrons and apply the fragment ions coincident momentum spectroscopy and nonadiabatic molecular dynamics simulations. We identify two mechanisms leading to the doubly charged ammonia dimer. In the first one, a single molecule is ionized. This initiates an ultrafast proton transfer process, leading to the formation of the NH2+ + NH4+ pair. Alternatively, a dimer with a delocalized charge is formed dominantly via the intermolecular Coulombic decay, forming the NH3+·NH3+ dication. This dication further dissociates into two NH3+ cations. The ab initio calculations have reproduced the measured kinetic energy release of the ion pairs and revealed the dynamical processes following the double ionization.
Collapse
Affiliation(s)
- Jiaqi Zhou
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Michal Belina
- Department of Physical Chemistry, University of Chemistry and Technology,Technická 5, 16628Prague 6, Czech Republic
| | - Shaokui Jia
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xiaorui Xue
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xintai Hao
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xueguang Ren
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology,Technická 5, 16628Prague 6, Czech Republic
| |
Collapse
|
4
|
Schewe HC, Muchová E, Belina M, Buttersack T, Stemer D, Seidel R, Thürmer S, Slavíček P, Winter B. Observation of intermolecular Coulombic decay and shake-up satellites in liquid ammonia. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:044901. [PMID: 35982825 PMCID: PMC9380002 DOI: 10.1063/4.0000151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
We report the first nitrogen 1s Auger-Meitner electron spectrum from a liquid ammonia microjet at a temperature of ∼223 K (-50 °C) and compare it with the simultaneously measured spectrum for gas-phase ammonia. The spectra from both phases are interpreted with the assistance of high-level electronic structure and ab initio molecular dynamics calculations. In addition to the regular Auger-Meitner-electron features, we observe electron emission at kinetic energies of 374-388 eV, above the leading Auger-Meitner peak (3a1 2). Based on the electronic structure calculations, we assign this peak to a shake-up satellite in the gas phase, i.e., Auger-Meitner emission from an intermediate state with additional valence excitation present. The high-energy contribution is significantly enhanced in the liquid phase. We consider various mechanisms contributing to this feature. First, in analogy with other hydrogen-bonded liquids (noticeably water), the high-energy signal may be a signature for an ultrafast proton transfer taking place before the electronic decay (proton transfer mediated charge separation). The ab initio dynamical calculations show, however, that such a process is much slower than electronic decay and is, thus, very unlikely. Next, we consider a non-local version of the Auger-Meitner decay, the Intermolecular Coulombic Decay. The electronic structure calculations support an important contribution of this purely electronic mechanism. Finally, we discuss a non-local enhancement of the shake-up processes.
Collapse
Affiliation(s)
- Hanns Christian Schewe
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam.2, 16610 Prague 6, Czech Republic
| | - Eva Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, 16628, Czech Republic
| | - Michal Belina
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, 16628, Czech Republic
| | - Tillmann Buttersack
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Dominik Stemer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | | | - Stephan Thürmer
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, 16628, Czech Republic
| | - Bernd Winter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
5
|
Poštulka J, Slavíček P, Pysanenko A, Poterya V, Fárník M. Bimolecular reactions on sticky and slippery clusters: Electron-induced reactions of hydrogen peroxide. J Chem Phys 2022; 156:054306. [DOI: 10.1063/5.0079283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Jan Poštulka
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, Prague 8, Czech Republic
| | - Viktoriya Poterya
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, Prague 8, Czech Republic
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, Prague 8, Czech Republic
| |
Collapse
|
6
|
Rohdenburg M, Fröch JE, Martinović P, Lobo CJ, Swiderek P. Combined Ammonia and Electron Processing of a Carbon-Rich Ruthenium Nanomaterial Fabricated by Electron-Induced Deposition. MICROMACHINES 2020; 11:mi11080769. [PMID: 32806527 PMCID: PMC7466110 DOI: 10.3390/mi11080769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023]
Abstract
Ammonia (NH3)-assisted purification of deposits fabricated by focused electron beam-induced deposition (FEBID) has recently been proven successful for the removal of halide contaminations. Herein, we demonstrate the impact of combined NH3 and electron processing on FEBID deposits containing hydrocarbon contaminations that stem from anionic cyclopentadienyl-type ligands. For this purpose, we performed FEBID using bis(ethylcyclopentadienyl)ruthenium(II) as the precursor and subjected the resulting deposits to NH3 and electron processing, both in an environmental scanning electron microscope (ESEM) and in a surface science study under ultrahigh vacuum (UHV) conditions. The results provide evidence that nitrogen from NH3 is incorporated into the carbon content of the deposits which results in a covalent nitride material. This approach opens a perspective to combine the promising properties of carbon nitrides with respect to photocatalysis or nanosensing with the unique 3D nanoprinting capabilities of FEBID, enabling access to a novel class of tailored nanodevices.
Collapse
Affiliation(s)
- Markus Rohdenburg
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359 Bremen, Germany;
- Correspondence: (M.R.); (P.S.); Tel.: +49-421-218-63203 (M.R.); +49-421-218-63200 (P.S.)
| | - Johannes E. Fröch
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.E.F.); (C.J.L.)
| | - Petra Martinović
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359 Bremen, Germany;
| | - Charlene J. Lobo
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.E.F.); (C.J.L.)
| | - Petra Swiderek
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359 Bremen, Germany;
- Correspondence: (M.R.); (P.S.); Tel.: +49-421-218-63203 (M.R.); +49-421-218-63200 (P.S.)
| |
Collapse
|
7
|
Pysanenko A, Gámez F, Fárník M, Chalabala J, Slavíček P. Photochemistry of Amylene Double Bond in Clusters on Free Argon Nanoparticles. J Phys Chem A 2020; 124:3038-3047. [PMID: 32240587 DOI: 10.1021/acs.jpca.0c00860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated reactivity of double bond in 2-methyl-2-butene (also trimethylethylene or amylene) in the excited and ionized states. In a combined experimental and theoretical study, we focused on both the intermolecular and intramolecular reactions. In a molecular beam experiment, we have sequentially picked up several amylene molecules on the surface of argon nanoparticles ArM, M̅ ≈ 90, acting as a cold support. Ionization with 70 eV electrons yields mass spectra strongly dominated by amylene cluster ions Am(Am)n+. Interestingly, upon multiphoton ionization with 193 nm (6.4 eV) photons, a new strong fragment series appears in the spectra, nominally corresponding to an addition of two carbon atoms, i.e., (Am)nC2+. This difference between electron and photoionization suggests a reaction in an excited state of amylene with a neighboring amylene molecule. We used techniques of nonadiabatic molecular dynamics to study the reactivity of amylene molecules both in the excited and in ionized states. Possible reaction pathways are proposed, substantiating the observed differences between the electron ionization and photoionization mass spectra.
Collapse
Affiliation(s)
- Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Francisco Gámez
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Jan Chalabala
- University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Petr Slavíček
- University of Chemistry and Technology, 166 28 Prague, Czech Republic
| |
Collapse
|
8
|
Ranković M, Chalabala J, Zawadzki M, Kočišek J, Slavíček P, Fedor J. Dissociative ionization dynamics of dielectric gas C3F7CN. Phys Chem Chem Phys 2019; 21:16451-16458. [PMID: 31312828 DOI: 10.1039/c9cp02188d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluoronitrile C3F7CN is a promising candidate for the replacement of SF6 dielectric gas in high-voltage insulation.
Collapse
Affiliation(s)
- M. Ranković
- J. Heyrovský Institute of Physical Chemistry
- Czech Academy of Sciences
- 18223 Prague
- Czech Republic
| | - J. Chalabala
- Department of Physical Chemistry
- University of Chemistry and Technology
- 16628 Prague
- Czech Republic
| | - M. Zawadzki
- J. Heyrovský Institute of Physical Chemistry
- Czech Academy of Sciences
- 18223 Prague
- Czech Republic
- Department of Atomic, Molecular, and Optical Physics
| | - J. Kočišek
- J. Heyrovský Institute of Physical Chemistry
- Czech Academy of Sciences
- 18223 Prague
- Czech Republic
| | - P. Slavíček
- J. Heyrovský Institute of Physical Chemistry
- Czech Academy of Sciences
- 18223 Prague
- Czech Republic
- Department of Physical Chemistry
| | - J. Fedor
- J. Heyrovský Institute of Physical Chemistry
- Czech Academy of Sciences
- 18223 Prague
- Czech Republic
| |
Collapse
|
9
|
Fárník M, Pysanenko A, Moriová K, Ballauf L, Scheier P, Chalabala J, Slavíček P. Ionization of Ammonia Nanoices with Adsorbed Methanol Molecules. J Phys Chem A 2018; 122:8458-8468. [PMID: 30296830 DOI: 10.1021/acs.jpca.8b07974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Large ammonia clusters represent a model system of ices that are omnipresent throughout the space. The interaction of ammonia ices with other hydrogen-boding molecules such as methanol or water and their behavior upon an ionization are thus relevant in the astrochemical context. In this study, ammonia clusters (NH3) N with the mean size N̅ ≈ 230 were prepared in molecular beams and passed through a pickup cell in which methanol molecules were adsorbed. At the highest exploited pickup pressures, the average composition of (NH3) N(CH3OH) M clusters was estimated to be N: M ≈ 210:10. On the other hand, the electron ionization of these clusters yielded about 75% of methanol-containing fragments (NH3) n(CH3OH) mH+ compared to 25% contribution of pure ammonia (NH3) nH+ ions. On the basis of this substantial disproportion, we propose the following ionization mechanism: The prevailing ammonia is ionized in most cases, resulting in NH4+ core solvated most likely with four ammonia molecules, yielding the well-known "magic number" structure (NH3)4NH4+. The methanol molecules exhibit a strong propensity for sticking to the fragment ion. We have also considered mechanisms of intracluster reactions. In most cases, proton transfer between ammonia units take place. The theoretical calculations suggested the proton transfer either from the methyl group or from the hydroxyl group of the ionized methanol molecule to ammonia to be the energetically open channels. However, the experiments with selectively deuterated methanols did not show any evidence for the D+ transfer from the CD3 group. The proton transfer from the hydroxyl group could not be excluded entirely or confirmed unambiguously by the experiment.
Collapse
Affiliation(s)
- Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Kamila Moriová
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Lorenz Ballauf
- Institut fur Ionenphysik und Angewandte Physik, Universitat Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut fur Ionenphysik und Angewandte Physik, Universitat Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Jan Chalabala
- Department of Physical Chemistry, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| | - Petr Slavíček
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
- Department of Physical Chemistry, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| |
Collapse
|
10
|
Chalabala J, Uhlig F, Slavíček P. Assessment of Real-Time Time-Dependent Density Functional Theory (RT-TDDFT) in Radiation Chemistry: Ionized Water Dimer. J Phys Chem A 2018. [PMID: 29513531 DOI: 10.1021/acs.jpca.8b01259] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionization in the condensed phase and molecular clusters leads to a complicated chain of processes with coupled electron-nuclear dynamics. It is difficult to describe such dynamics with conventional nonadiabatic molecular dynamics schemes since the number of states swiftly increases as the molecular system grows. It is therefore attractive to use a direct electron and nuclear propagation such as the real-time time-dependent density functional theory (RT-TDDFT). Here we report a RT-TDDFT benchmark study on simulations of singly and doubly ionized states of a water monomer and dimer as a prototype for more complex processes in a condensed phase. We employed the RT-TDDFT based Ehrenfest molecular dynamics with a generalized gradient approximate (GGA) functional and compared it with wave-function-based surface hopping (SH) simulations. We found that the initial dynamics of a singly HOMO ionized water dimer is similar for both the RT-TDDFT/GGA and the SH simulations but leads to completely different reaction channels on a longer time scale. This failure is attributed to the self-interaction error in the GGA functionals and it can be avoided by using hybrid functionals with large fraction of exact exchange (represented here by the BHandHLYP functional). The simulations of doubly ionized states are reasonably described already at the GGA level. This suggests that the RT-TDDFT/GGA method could describe processes following the autoionization processes such as Auger emission, while its applicability to more complex processes such as intermolecular Coulombic decay remains limited.
Collapse
Affiliation(s)
- Jan Chalabala
- Department of Physical Chemistry , University of Chemistry and Technology , Technická 5 , 16628 Prague , Czech Republic
| | - Frank Uhlig
- Department of Physical Chemistry , University of Chemistry and Technology , Technická 5 , 16628 Prague , Czech Republic.,Institute for Computational Physics , University of Stuttgart , Allmandring 3 , 70569 Stuttgart , Germany
| | - Petr Slavíček
- Department of Physical Chemistry , University of Chemistry and Technology , Technická 5 , 16628 Prague , Czech Republic.,Jaroslav Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , Dolejškova 3 , 18200 Prague , Czech Republic
| |
Collapse
|
11
|
Suchan J, Hollas D, Curchod BFE, Slavíček P. On the importance of initial conditions for excited-state dynamics. Faraday Discuss 2018; 212:307-330. [DOI: 10.1039/c8fd00088c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The vast majority of ab initio excited-state simulations are performed within semiclassical, trajectory-based approaches. Apart from the underlying electronic-structure theory, the reliability of the simulations is controlled by a selection of initial conditions for the classical trajectories. We discuss appropriate choices of initial conditions for simulations of different experimental arrangements: dynamics initiated by continuum-wave (CW) laser fields or triggered by ultrashort laser pulses.
Collapse
Affiliation(s)
- Jiří Suchan
- Department of Physical Chemistry
- University of Chemistry and Technology, Prague
- 16628 Prague
- Czech Republic
| | - Daniel Hollas
- Department of Physical Chemistry
- University of Chemistry and Technology, Prague
- 16628 Prague
- Czech Republic
| | | | - Petr Slavíček
- Department of Physical Chemistry
- University of Chemistry and Technology, Prague
- 16628 Prague
- Czech Republic
| |
Collapse
|