1
|
Seididamyeh M, Netzel ME, Mereddy R, Harmer JR, Sultanbawa Y. Effect of gum Arabic on antifungal photodynamic activity of curcumin against Botrytis cinerea spores. Int J Biol Macromol 2024; 283:137019. [PMID: 39481702 DOI: 10.1016/j.ijbiomac.2024.137019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
This study investigated the effect of gum Arabic on curcumin's phototoxicity against Botrytis cinerea, a significant cause of postharvest losses in horticultural produce. Curcumin-loaded nanoparticle suspensions and emulsions stabilized with gum Arabic were prepared and their absorbance, fluorescence emission, physicochemical properties, antimicrobial photodynamic activity (using response surface methodology (RSM)), and reactive oxygen species (ROS) generation (via electron paramagnetic resonance (EPR) spectroscopy) were evaluated. Fluorescence emission exhibited a blue shift (510-550 nm) in both formulations, with emulsions showing higher intensities due to a more hydrophobic environment. Gum Arabic concentration significantly influenced the physicochemical properties of both suspensions, with nanoparticle size decreasing from 572.80 nm to 202.80 nm as gum Arabic concentration increased from 0.5 % to 2.5 % (at 65 μM curcumin). Nanoparticle suspensions demonstrated higher antimicrobial efficacy, reducing B. cinerea spores by 0.39-3.40 log10(CFU.ml-1), compared to 0.00-0.46 log10(CFU.ml-1) in emulsions. The phototoxic effect was dependent on curcumin concentration and light irradiance, as demonstrated by RSM. EPR confirmed the generation of superoxide anion and hydroxyl radicals in both formulations, which indicated a Type I photodynamic mechanism, with nanoparticle suspensions having a sustained ROS generation. Overall, gum Arabic did not impair curcumin's antifungal photodynamic activity, making it as a promising stabiliser for curcumin-based treatments.
Collapse
Affiliation(s)
- Maral Seididamyeh
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, 4068, Australia.
| | - Michael E Netzel
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, 4068, Australia.
| | - Ram Mereddy
- Department of Agriculture and Fisheries, Queensland Government, Coopers Plains, QLD 4108, Australia.
| | - Jeffrey R Harmer
- The Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, 4068, Australia.
| |
Collapse
|
2
|
Rebelo SLH, Laia CAT, Szefczyk M, Guedes A, Silva AMG, Freire C. Hybrid Zn-β-Aminoporphyrin-Carbon Nanotubes: Pyrrolidine and Direct Covalent Linkage Recognition, and Multiple-Photo Response. Molecules 2023; 28:7438. [PMID: 37959857 PMCID: PMC10649226 DOI: 10.3390/molecules28217438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
To unveil and shape the molecular connectivity in (metallo)porphyrin-carbon nanotube hybrids are of main relevance for the multiple medicinal, photoelectronic, catalytic, and photocatalytic applications of these materials. Multi-walled carbon nanotubes (MWCNTs) were modified through 1,3-dipolar cycloaddition reactions with azomethine ylides generated in situ and carrying pentafluorophenyl groups, followed by immobilization of the β-amino-tetraphenylporphyrinate Zn(II). The functionalities were confirmed via XPS and FTIR, whereas Raman spectroscopy showed disruptions on the graphitic carbon nanotube surface upon both steps. The functionalization extension, measured via TGA mass loss and corroborated via XPS, was 0.2 mmol·g-1. Photophysical studies attest to the presence of the different porphyrin-carbon nanotube connectivity in the nanohybrid. Significantly different emission spectra and fluorescence anisotropy of 0.15-0.3 were observed upon variation of excitation wavelength. Vis-NIR absorption and flash photolysis experiments showed energy/charge transfer in the photoactivated nanohybrid. Moreover, evidence was found for direct reaction of amino groups with a carbon nanotube surface in the presence of molecular dipoles such as the zwitterionic sarcosine amino acid.
Collapse
Affiliation(s)
- Susana L. H. Rebelo
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - César A. T. Laia
- LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Monika Szefczyk
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Alexandra Guedes
- Instituto de Ciências da Terra, Pólo da FCUP, Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Ana M. G. Silva
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Cristina Freire
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Khalid A, Yi W, Yoo S, Abbas S, Si J, Hou X, Hou J. Single-chirality of single-walled carbon nanotubes (SWCNTs) through chromatography and its potential biological applications. NEW J CHEM 2023. [DOI: 10.1039/d2nj04056e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gel chromatography is used to separate single-chirality and selective-diameter SWCNTs. We also explore the use of photothermal therapy and biosensor applications based on single-chirality, selected-diameter, and unique geometric shape.
Collapse
Affiliation(s)
- Asif Khalid
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Wenhui Yi
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Sweejiang Yoo
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Shakeel Abbas
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Jinhai Si
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Xun Hou
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Jin Hou
- Department of Pharmacology, School of Basic Medical Science, Xi’an Medical University, Xi’an, Shaanxi, 710021, China
| |
Collapse
|
4
|
Pereira-Andrade E, Brum SM, Policarpo EMC, Gautam SK, Plantevin O, Lara LRS, Stumpf HO, Azevedo GM, Mazzoni MSC, Cury LA, Malachias A, do Pim WD, Sáfar GAM. All-perylene-derivative for white light emitting diodes. Phys Chem Chem Phys 2020; 22:20744-20750. [DOI: 10.1039/d0cp02718a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tb(H3PTC)3PTCDAAn organic-based bright white light emitting compound, namely Tb(H3PTC)3, able to be used as part of a WOLED and as a part of a RGB system that can withstand high temperatures (∼700 K), is developed using PTCDA and Tb(NO3)3·5H2O as precursors by hydrothermal synthesis.
Collapse
|
5
|
Yue X, Miao X, Shen X, Ji Z, Zhou H, Sun Y, Xu K, Zhu G, Kong L, Chen Q, Li N, He X. Flower-like silver bismuthate supported on nitrogen-doped carbon dots modified graphene oxide sheets with excellent degradation activity for organic pollutants. J Colloid Interface Sci 2019; 540:167-176. [PMID: 30639664 DOI: 10.1016/j.jcis.2019.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/15/2018] [Accepted: 01/07/2019] [Indexed: 01/04/2023]
Abstract
In this study, a new ternary AgBiO3/GO/NCDs composite (GO = graphene oxide, NCDs = nitrogen-doped carbon dots) has been successfully prepared through in-situ growth of flower-like AgBiO3 on GO/NCDs complex support. The AgBiO3/GO/NCDs composite exhibits significantly enhanced degradation activities towards organic pollutants of rhodamine B, phenol and tetracycline. Especially, the refractory tetracycline (20 mg L-1) can be completely removed within 6.0 min with a dosage of 30 mg of AgBiO3/GO/NCDs under the assistance of peroxymonosulfate (PMS, 0.2 mM). It is revealed that GO in the composite can facilitate the quick and efficient electron transfer and improve the generation of reactive oxygen species during the degradation process, while the NCDs may play double roles as both the electron-acceptor and the reactive site. Besides, the electrons can be captured by PMS to produce plenty of sulfate radicals (SO4-) with very strong oxidation ability. All these factors collaboratively promote the degradation efficiency of AgBiO3/GO/NCDs towards organic pollutants. The excellent degradation activities of AgBiO3/GO/NCDs endow it with potential application in wastewater purification.
Collapse
Affiliation(s)
- Xiaoyang Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xuli Miao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiaoping Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Zhenyuan Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hu Zhou
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Yiming Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Keqiang Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Guoxing Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Lirong Kong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Quanrun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Na Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiaomei He
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|