1
|
Kirch A, Celaschi YM, de Almeida JM, Miranda CR. Brine-Oil Interfacial Tension Modeling: Assessment of Machine Learning Techniques Combined with Molecular Dynamics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15837-15843. [PMID: 32191023 DOI: 10.1021/acsami.9b22189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The physical chemistry mechanisms behind the oil-brine interface phenomena are not yet fully clarified. The knowledge of the relation between brine composition and concentration for a given oil may lead to the ionic tuning of the injected solution on geochemical and enhanced oil recovery processes. Thus, it is worth examining the parameters influencing the interfacial properties. In this context, we have combined machine learning (ML) techniques with classical molecular dynamics simulations (MD) to predict oil/brine interfacial tensions (IFT) effectively and compared this process to a linear regression (LR) method. To diversify our data set, we have introduced a new atomistic crude oil model (medium) with 36 different types of hydrocarbon molecules. The MD simulations were performed for mono- and multicomponent (toluene, heptane, Heptol, light, and medium) oil systems interfaced with sulfate and chloride brines with varying cations (Na+, K+, Ca2+, and Mg2+) and salinity concentration. Thus, a consistent IFT data set was built for the ML training and LR fitting at room temperature and pressure conditions, over the feature space considering oil density, oil composition, salinity, and ionic concentrations. On the basis of gradient boosted (GB) algorithms, we have observed that the dominant quantities affecting the IFT are related to the oil attributes and the salinity concentration, and no specific ion dominates the IFT changes. When the obtained LR model was validated against MD and experimental data from the literature, the error varied up to 2% and 9%, respectively, showing a robust and consistent transferability. The combination of MD simulations and ML techniques may provide a fast and cost-effective IFT determination over multiple and complex fluid-fluid and fluid-solid interfaces.
Collapse
Affiliation(s)
- Alexsandro Kirch
- Instituto de Fı́sica, DFMT, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, Brazil
| | - Yuri M Celaschi
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, SP, Brazil
| | - James M de Almeida
- Instituto de Fı́sica, DFMT, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, Brazil
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, SP, Brazil
| | - Caetano R Miranda
- Instituto de Fı́sica, DFMT, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, Brazil
| |
Collapse
|
2
|
Wrobel EC, de Lara LS, do Carmo TAS, Castellen P, Lazzarotto M, de Lázaro SR, Camilo A, Caseli L, Schmidt R, DeWolf CE, Wohnrath K. The antibacterial activity of p-tert-butylcalix[6]arene and its effect on a membrane model: molecular dynamics and Langmuir film studies. Phys Chem Chem Phys 2020; 22:6154-6166. [PMID: 32124897 DOI: 10.1039/d0cp00432d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The antibacterial activity of a calixarene derivative, p-tert-butylcalix[6]arene (Calix6), was assessed and was shown not to inhibit the growth of E. coli, S. aureus and B. subtilis bacteria. With the aim of gaining more insights into the absence of antibacterial activity of Calix6, the interaction of this derivative with DPPG, a bacterial cell membrane lipid, was studied. Langmuir monolayers were used as the model membrane. Pure DPPG and pure Calix6 monolayers, as well as binary DPPG:Calix6 mixtures were studied using surface pressure measurements, compressional modulus, Brewster angle and fluorescence microscopies, ellipsometry, polarization-modulation infrared reflection absorption spectroscopy and molecular dynamics simulations. Thermodynamic properties of the mixed monolayers were additionally calculated using thermodynamic parameters. The analysis of isotherms showed that Calix6 significantly affects the DPPG monolayers, modifying the isotherm profile and increasing the molecular area, in agreement with the molecular dynamics simulations. The presence of Calix6 in the mixed monolayers decreased the interfacial elasticity, indicating that calixarene disrupts the strong intermolecular interactions of DPPG hindering its organization into a compact arrangement. At low molar ratios of Calix6, the DPPG:Calix6 interactions are preferentially attractive, due to the interactions between the hydrophobic tails of DPPG and the tert-butyl groups of Calix6. Increasing the proportion of calixarene generates repulsive interactions. Calix6 significantly affects the hydrophobic tail organization, which was confirmed by PM-IRRAS measurements. Calix6 appears to be expelled from the mixed films at a biologically relevant surface pressure, π = 30 mN m-1, indicating a low interaction with the cell membrane model related to the absence of antibacterial activity.
Collapse
Affiliation(s)
- Ellen C Wrobel
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Ponta Grossa, Par84030-900, Brazil.
| | - Lucas S de Lara
- Department of Physics, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná 84030-900, Brazil
| | - Taiza A S do Carmo
- Academic Department of Mathematic, Universidade Federal Tecnológica do Paraná - Campus Ponta Grossa, Ponta Grossa, Paraná 84016-210, Brazil
| | - Patrícia Castellen
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Ponta Grossa, Par84030-900, Brazil.
| | - Márcio Lazzarotto
- Department of Organic Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Sérgio R de Lázaro
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Ponta Grossa, Par84030-900, Brazil.
| | - Alexandre Camilo
- Department of Physics, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná 84030-900, Brazil
| | - Luciano Caseli
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo (SP) 09972-970, Brazil
| | - Rolf Schmidt
- Department of Chemistry and Biochemistry and Concordia Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Québec H4B 1R6, Canada
| | - Christine E DeWolf
- Department of Chemistry and Biochemistry and Concordia Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Québec H4B 1R6, Canada
| | - Karen Wohnrath
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Ponta Grossa, Par84030-900, Brazil.
| |
Collapse
|
3
|
Xu Y, Hao Q, Mandler D. Electrochemical detection of dopamine by a calixarene-cellulose acetate mixed Langmuir-Blodgett monolayer. Anal Chim Acta 2018; 1042:29-36. [PMID: 30428985 DOI: 10.1016/j.aca.2018.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
The sensing performance of a Langmuir-Blodgett monolayer was significantly improved by controlling the film organization at the air-water interface. Cellulose acetate (CA) and 4-tert-butylcalix [6]arene (calix) were co-spread and formed a Langmuir film, which was efficiently transferred onto a preoxidized gold electrode, Auox. The modified gold electrode was applied as a fast, highly sensitive electrochemical sensing platform for the quantitative determination of a model molecule, dopamine (DA). The modified gold electrode, CA-calix/Auox, demonstrated better recognition and sensing ability towards dopamine as compared with electrodes modified by a single component. Under the optimized conditions, the reduction peak currents at the CA-calix/Auox increased linearly within the concentration range of dopamine from 5 to 100 and 100-7500 nM, and exhibited a very low limit of detection (LOD) of 2.54 nM (S/N = 3). These results suggest a simple, superior and efficient approach for the controllable rearrangement of Langmuir-Blodgett monolayers on a molecular level. The electroanalytical performance was optimized from the perspective of the electrode-electrolyte interface.
Collapse
Affiliation(s)
- Yujuan Xu
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qingli Hao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Daniel Mandler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|