1
|
Liu X, Zhang G, Wang L, Fu H. Structural Design Strategy and Active Site Regulation of High-Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006766. [PMID: 34085767 DOI: 10.1002/smll.202006766] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/03/2021] [Indexed: 05/27/2023]
Abstract
Zinc-air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial cathode reactions in ZABs. Development of bifunctional ORR/OER catalysts with high efficiency and well stability is critical to improve the performance of ZABs. In this review, the ORR and OER mechanisms are first explained. Further, the design principles of ORR/OER electrocatalysts are discussed in terms of atomic adjustment mechanism and structural design in conjunction with the latest reported in situ characterization techniques, which provide useful insights on the ORR/OER mechanisms of the catalyst. The improvement in the energy efficiency, stability, and environmental adaptability of the new hybrid ZAB by the inclusion of additional reaction, including the introduction of transition-metal redox couples in the cathode and the addition of modifiers in the electrolyte to change the OER pathway, is also summarized. Finally, current challenges and future research directions are presented.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Guangying Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
2
|
Wei H, Rodriguez EF, Best AS, Hollenkamp AF, Chen D, Caruso RA. Ordered Mesoporous Graphitic Carbon/Iron Carbide Composites with High Porosity as a Sulfur Host for Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13194-13204. [PMID: 30912440 DOI: 10.1021/acsami.8b21627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The lithium-sulfur battery (LSB) is a promising candidate for future energy storage but faces technological challenges including the low electronic conductivity of sulfur and the solubility of intermediates during cycling. Additionally, current host materials often lack sufficient conductivity and porosity to raise the sulfur loading to over 80 wt %. Here, ordered mesoporous graphitic carbon/iron carbide nanocomposites were prepared via an evaporation-induced self-assembly process using soluble resol, prehydrolyzed tetraethyl orthosilicate (TEOS), and iron(III) chloride as the carbon, silica (SiO2), and iron precursors, respectively. Graphitization and SiO2 etching were conducted simultaneously via Teflon-assisted, solid-state decomposition at high temperature. A high surface area (∼3100 m2 g-1), large pore volume (∼3.3 cm3 g-1), and graphitized carbon frame were achieved, giving a high sulfur loading (85 wt %) while tolerating volumetric expansion during discharge. Electrochemical testing of a LSB containing the composite/sulfur cathode exhibited a superior reversible capacity exceeding 1300 mAh g-1 at a moderate current (C/10) and a low decay in capacity of 9% after 500 cycles at C/5. The interaction between mesoporous graphitic carbon and sulfur is proposed.
Collapse
Affiliation(s)
- Hao Wei
- Particulate Fluids Processing Centre, School of Chemistry , The University of Melbourne , Melbourne , Victoria 3010 , Australia
| | - Erwin F Rodriguez
- Particulate Fluids Processing Centre, School of Chemistry , The University of Melbourne , Melbourne , Victoria 3010 , Australia
| | - Adam S Best
- CSIRO , Manufacturing, Clayton South, Melbourne , Victoria 3169 , Australia
| | | | - Dehong Chen
- Applied Chemistry and Environmental Science , RMIT University , Melbourne , Victoria 3000 , Australia
| | - Rachel A Caruso
- Particulate Fluids Processing Centre, School of Chemistry , The University of Melbourne , Melbourne , Victoria 3010 , Australia
- Applied Chemistry and Environmental Science , RMIT University , Melbourne , Victoria 3000 , Australia
| |
Collapse
|
3
|
Yuan M, Wang M, Lu P, Sun Y, Dipazir S, Zhang J, Li S, Zhang G. Tuning carbon nanotube-grafted core-shell-structured cobalt selenide@carbon hybrids for efficient oxygen evolution reaction. J Colloid Interface Sci 2019; 533:503-512. [DOI: 10.1016/j.jcis.2018.08.104] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 11/30/2022]
|
4
|
Gewirth AA, Varnell JA, DiAscro AM. Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous Systems. Chem Rev 2018; 118:2313-2339. [DOI: 10.1021/acs.chemrev.7b00335] [Citation(s) in RCA: 504] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Andrew A. Gewirth
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0385, Japan
| | - Jason A. Varnell
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Angela M. DiAscro
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Deng J, Deng D, Bao X. Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606967. [PMID: 28940838 DOI: 10.1002/adma.201606967] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/31/2017] [Indexed: 05/24/2023]
Abstract
Great endeavors are undertaken to search for low-cost, rich-reserve, and highly efficient alternatives to replace precious-metal catalysts, in order to cut costs and improve the efficiency of catalysts in industry. However, one major problem in metal catalysts, especially nonprecious-metal catalysts, is their poor stability in real catalytic processes. Recently, a novel and promising strategy to construct 2D materials encapsulating nonprecious-metal catalysts has exhibited inimitable advantages toward catalysis, especially under harsh conditions (e.g., strong acidity or alkalinity, high temperature, and high overpotential). The concept, which originates from unique electron penetration through the 2D crystal layer from the encapsulated metals to promote a catalytic reaction on the outermost surface of the 2D crystal, has been widely applied in a variety of reactions under harsh conditions. It has been vividly described as "chainmail for catalyst." Herein, recent progress concerning this chainmail catalyst is reviewed, particularly focusing on the structural design and control with the associated electronic properties of such heterostructure catalysts, and also on their extensive applications in fuel cells, water splitting, CO2 conversion, solar cells, metal-air batteries, and heterogeneous catalysis. In addition, the current challenges that are faced in fundamental research and industrial application, and future opportunities for these fantastic catalytic materials are discussed.
Collapse
Affiliation(s)
- Jiao Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| |
Collapse
|
6
|
Cao C, Wei L, Zhai Q, Wang G, Shen J. Biomass-derived nitrogen and boron dual-doped hollow carbon tube as cost-effective and stable synergistic catalyst for oxygen electroreduction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|