1
|
Liu L, Fu Y, Wu H, Lu X, Dong W, Wang X, Zhang DH, Fu B. Determining Rate Coefficients for the 11-Atom Reaction via Ring Polymer Molecular Dynamics Based on a 27-Dimensional Potential Energy Surface: The Reaction between anti-CH 3CHOO and H 2O. J Phys Chem Lett 2025; 16:460-467. [PMID: 39743775 DOI: 10.1021/acs.jpclett.4c03327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Criegee intermediates (CIs) are potentially significant oxidants and a major source of OH radicals in the troposphere. The anti-CH3CHOO intermediate has been confirmed as a crucial component of CIs in the atmospheric environment. Although previous studies have provided some experimental and theoretical rate constants, inconsistencies among these data remain, and the experimental data do not cover the full range of temperatures present in the troposphere. Here, we developed an accurate full-dimensional (27-dimensional) potential energy surface (PES) for the anti-CH3CHOO + H2O reaction using the fundamental invariant-neural network approach and performed the ring polymer molecular dynamics (RPMD) calculations on the basis of this PES for this complex multichannel reaction involving 11 atoms, posing a significant challenge due to current computational limits. The RPMD rate coefficients between 250 and 350 K are ∼1 order of magnitude larger than the results based on variational transition-state theory. This discrepancy highlights pronounced dynamical effects and moderate quantum effects across the two hydrogen-transfer channels. This work provides reliable rate coefficients for the title reaction, which are vital for evaluating the atmospheric fate of anti-CH3CHOO and for developing reliable atmospheric models.
Collapse
Affiliation(s)
- Lijie Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanlin Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hao Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoxiao Lu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian 116029, China
| | - Wenrui Dong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, Hefei 230088, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
West NA, Li LHD, Millar TJ, Van de Sande M, Rutter E, Blitz MA, Lehman JH, Decin L, Heard DE. Experimental and theoretical study of the low-temperature kinetics of the reaction of CN with CH 2O and implications for interstellar environments. Phys Chem Chem Phys 2023; 25:7719-7733. [PMID: 36876874 PMCID: PMC10015628 DOI: 10.1039/d2cp05043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Rate coefficients for the reaction of CN with CH2O were measured for the first time below room temperature in the range 32-103 K using a pulsed Laval nozzle apparatus together with the Pulsed Laser Photolysis-Laser-Induced Fluorescence technique. The rate coefficients exhibited a strong negative temperature dependence, reaching (4.62 ± 0.84) × 10-11 cm3 molecule-1 s-1 at 32 K, and no pressure dependence was observed at 70 K. The potential energy surface (PES) of the CN + CH2O reaction was calculated at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level of theory, with the lowest energy channel to reaction characterized by the formation of a weakly-bound van der Waals complex, bound by 13.3 kJ mol-1, prior to two transition states with energies of -0.62 and 3.97 kJ mol-1, leading to the products HCN + HCO or HNC + HCO, respectively. For the formation of formyl cyanide, HCOCN, a large activation barrier of 32.9 kJ mol-1 was calculated. Reaction rate theory calculations were performed with the MESMER (Master Equation Solver for Multi Energy well Reactions) package on this PES to calculate rate coefficients. While this ab initio description provided good agreement with the low-temperature rate coefficients, it was not capable of describing the high-temperature experimental rate coefficients from the literature. However, increasing the energies and imaginary frequencies of both transition states allowed MESMER simulations of the rate coefficients to be in good agreement with data spanning 32-769 K. The mechanism for the reaction is the formation of a weakly-bound complex followed by quantum mechanical tunnelling through the small barrier to form HCN + HCO products. MESMER calculations showed that channel generating HNC is not important. MESMER simulated the rate coefficients from 4-1000 K which were used to recommend best-fit modified Arrhenius expressions for use in astrochemical modelling. The UMIST Rate12 (UDfa) model yielded no significant changes in the abundances of HCN, HNC, and HCO for a variety of environments upon inclusion of rate coefficients reported here. The main implication from this study is that the title reaction is not a primary formation route to the interstellar molecule formyl cyanide, HCOCN, as currently implemented in the KIDA astrochemical model.
Collapse
Affiliation(s)
- Niclas A West
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | | | - Tom J Millar
- Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, UK
| | - Marie Van de Sande
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Edward Rutter
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | - Mark A Blitz
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | - Julia H Lehman
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | - Leen Decin
- Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Dwayne E Heard
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Vanuzzo G, Mancini L, Pannacci G, Liang P, Marchione D, Recio P, Tan Y, Rosi M, Skouteris D, Casavecchia P, Balucani N, Hickson KM, Loison JC, Dobrijevic M. Reaction N( 2D) + CH 2CCH 2 (Allene): An Experimental and Theoretical Investigation and Implications for the Photochemical Models of Titan. ACS EARTH & SPACE CHEMISTRY 2022; 6:2305-2321. [PMID: 36303717 PMCID: PMC9589905 DOI: 10.1021/acsearthspacechem.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
We report on a combined experimental and theoretical investigation of the N(2D) + CH2CCH2 (allene) reaction of relevance in the atmospheric chemistry of Titan. Experimentally, the reaction was investigated (i) under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (E c) of 33 kJ/mol to determine the primary products and the reaction micromechanism and (ii) in a continuous supersonic flow reactor to determine the rate constant as a function of temperature from 50 to 296 K. Theoretically, electronic structure calculations of the doublet C3H4N potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction mechanism. The reaction is found to proceed via barrierless addition of N(2D) to one of the two equivalent carbon-carbon double bonds of CH2CCH2, followed by the formation of several cyclic and linear isomeric C3H4N intermediates that can undergo unimolecular decomposition to bimolecular products with elimination of H, CH3, HCN, HNC, and CN. The kinetic experiments confirm the barrierless nature of the reaction through the measurement of rate constants close to the gas-kinetic rate at all temperatures. Statistical estimates of product branching fractions (BFs) on the theoretical PES were carried out under the conditions of the CMB experiments at room temperature and at temperatures (94 and 175 K) relevant for Titan. Up to 14 competing product channels were statistically predicted with the main ones at E c = 33 kJ/mol being formation of cyclic-CH2C(N)CH + H (BF = 87.0%) followed by CHCCHNH + H (BF = 10.5%) and CH2CCNH + H (BF = 1.4%) the other 11 possible channels being negligible (BFs ranging from 0 to 0.5%). BFs under the other conditions are essentially unchanged. Experimental dynamical information could only be obtained on the overall H-displacement channel, while other possible channels could not be confirmed within the sensitivity of the method. This is also in line with theoretical predictions as the other possible channels are predicted to be negligible, including the HCN/HNC + C2H3 (vinyl) channels (overall BF < 1%). The dynamics and product distributions are dramatically different with respect to those observed in the isomeric reaction N(2D) + CH3CCH (propyne), where at a similar E c the main product channels are CH2NH (methanimine) + C2H (BF = 41%), c-C(N)CH + CH3 (BF = 32%), and CH2CHCN (vinyl cyanide) + H (BF = 12%). Rate coefficients (the recommended value is 1.7 (±0.2) × 10-10 cm3 s-1 over the 50-300 K range) and BFs have been used in a photochemical model of Titan's atmosphere to simulate the effect of the title reaction on the species abundance (including any new products formed) as a function of the altitude.
Collapse
Affiliation(s)
- Gianmarco Vanuzzo
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Luca Mancini
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Giacomo Pannacci
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Pengxiao Liang
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Demian Marchione
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Pedro Recio
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Yuxin Tan
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Marzio Rosi
- Dipartimento
di Ingegneria Civile e Ambientale, Università
degli Studi di Perugia, 06100 Perugia, Italy
| | | | - Piergiorgio Casavecchia
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Nadia Balucani
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Kevin M. Hickson
- Université
de Bordeaux, Institut des Sciences Moléculaires,
UMR 5255, F-33400 Talence, France
- CNRS,
Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France
| | - Jean-Christophe Loison
- Université
de Bordeaux, Institut des Sciences Moléculaires,
UMR 5255, F-33400 Talence, France
- CNRS,
Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France
| | - Michel Dobrijevic
- Laboratoire
d’Astrophysique de Bordeaux, Université
de Bordeaux, CNRS, B18N,
allée Geoffroy Saint-Hilaire, F-33615 Pessac, France
| |
Collapse
|
4
|
Hickson KM, Loison JC. Kinetic Study of the Gas-Phase O( 1D) + CH 3OH and O( 1D) + CH 3CN Reactions: Low-Temperature Rate Constants and Atomic Hydrogen Product Yields. J Phys Chem A 2022; 126:3903-3913. [PMID: 35687018 DOI: 10.1021/acs.jpca.2c01946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomic oxygen in its first excited singlet state, O(1D), is an important species in the photochemistry of several planetary atmospheres and has been predicted to be a potentially important reactive species on interstellar ices. Here, we report the results of a kinetic study of the reactions of O(1D) with methanol, CH3OH, and acetonitrile, CH3CN, over the 50-296 K temperature range. A continuous supersonic flow reactor is used to attain these low temperatures coupled with pulsed laser photolysis and pulsed laser-induced fluorescence to generate and monitor O(1D) atoms, respectively. Secondary experiments examining the atomic hydrogen product channels of these reactions are also performed, through laser-induced fluorescence measurements of H(2S) atom formation. On the kinetic side, the rate constants for these reactions are seen to be large (>2 × 10-10 cm3 s-1) and consistent with barrierless reactions, although they display contrasting dependences as a function of temperature. On the product formation side, both reactions are seen to yield non-negligible quantities of atomic hydrogen. For the O(1D) + CH3OH reaction, the derived yields are in good agreement with the conclusions of previous experimental and theoretical works. For the O(1D) + CH3CN reaction, whose H-atom formation channels had not previously been investigated, electronic structure calculations of several new product formation channels are performed to explain the observed H-atom yields. These calculations demonstrate the barrierless and exothermic nature of the relevant exit channels, confirming that atomic hydrogen is also an important product of the O(1D) + CH3CN reaction.
Collapse
Affiliation(s)
- Kevin M Hickson
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | | |
Collapse
|
5
|
Hickson KM, Loison JC, Larregaray P, Bonnet L, Wakelam V. An Experimental and Theoretical Investigation of the Gas-Phase C( 3P) + N 2O Reaction. Low Temperature Rate Constants and Astrochemical Implications. J Phys Chem A 2022; 126:940-950. [PMID: 35113561 DOI: 10.1021/acs.jpca.1c10112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction between atomic carbon in its ground electronic state, C(3P), and nitrous oxide, N2O, has been studied below room temperature due to its potential importance for astrochemistry, with both species considered to be present at high abundance levels in a range of interstellar environments. On the experimental side, we measured rate constants for this reaction over the 50-296 K range using a continuous supersonic flow reactor. C(3P) atoms were generated by the pulsed photolysis of carbon tetrabromide at 266 nm and were detected by pulsed laser-induced fluorescence at 115.8 nm. Additional measurements allowing the major product channels to be elucidated were also performed. On the theoretical side, statistical rate theory was used to calculate low temperature rate constants. These calculations employed the results of new electronic structure calculations of the 3A″ potential energy surface of CNNO and provided a basis to extrapolate the measured rate constants to lower temperatures and pressures. The rate constant was found to increase monotonically as the temperature falls (kC(3P)+N2O (296 K) = (3.4 ± 0.3) × 10-11 cm3 s-1), reaching a value of kC(3P)+N2O (50 K) = (7.9 ± 0.8) × 10-11 cm3 s-1 at 50 K. As current astrochemical models do not include the C + N2O reaction, we tested the influence of this process on interstellar N2O and other related species using a gas-grain model of dense interstellar clouds. These simulations predict that N2O abundances decrease significantly at intermediate times (103 - 105 years) when gas-phase C(3P) abundances are high.
Collapse
Affiliation(s)
- Kevin M Hickson
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | | | - Pascal Larregaray
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Laurent Bonnet
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | | |
Collapse
|
6
|
Cao J, Wu Y, Bian W. Ring polymer molecular dynamics of the C(1D)+H2 reaction on the most recent potential energy surfaces. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jianwei Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanan Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wensheng Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Hickson KM, Bhowmick S, Suleimanov YV, Brandão J, Coelho DV. Experimental and theoretical studies of the gas-phase reactions of O( 1D) with H 2O and D 2O at low temperature. Phys Chem Chem Phys 2021; 23:25797-25806. [PMID: 34761769 DOI: 10.1039/d1cp04614d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the results of an experimental and theoretical study of the gas-phase reactions between O(1D) and H2O and O(1D) and D2O at room temperature and below. On the experimental side, the kinetics of these reactions have been investigated over the 50-127 K range using a continuous flow Laval nozzle apparatus, coupled with pulsed laser photolysis and pulsed laser induced fluorescence for the production and detection of O(1D) atoms respectively. Experiments were also performed at 296 K in the absence of a Laval nozzle. On the theoretical side, the existing full-dimensional ground X 1A potential energy surface for the H2O2 system involved in this process has been reinvestigated and enhanced to provide a better description of the barrierless H-atom abstraction pathway. Based on this enhanced potential energy surface, quasiclassical trajectory calculations and ring polymer molecular dynamics simulations have been performed to obtain low temperature rate constants. The measured and calculated rate constants display similar behaviour above 100 K, showing little or no variation as a function of temperature. Below 100 K, the experimental rate constants increase dramatically, in contrast to the essentially temperature independent theoretical values. The possible origins of the divergence between experiment and theory at low temperatures are discussed.
Collapse
Affiliation(s)
- Kevin M Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France. .,CNRS, Institut des Sciences Moléculaires, F-33400 Talence, France
| | - Somnath Bhowmick
- Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.,Climate & Atmosphere Research Centre, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus
| | - Yury V Suleimanov
- Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus
| | - João Brandão
- Departamento de Química e Farmácia - FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Daniela V Coelho
- Departamento de Química e Farmácia - FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
8
|
Chen Q, Hu X, Guo H, Xie D. Theoretical H + O 3 rate coefficients from ring polymer molecular dynamics on an accurate global potential energy surface: assessing experimental uncertainties. Phys Chem Chem Phys 2021; 23:3300-3310. [PMID: 33506830 DOI: 10.1039/d0cp05771a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal rate coefficients and kinetic isotope effects have been calculated for an important atmospheric reaction H/D + O3 → OH/OD + O2 based on an accurate permutation invariant polynomial-neural network potential energy surface, using ring polymer molecular dynamics (RPMD), quasi-classical trajectory (QCT) and variational transition-state theory (VTST) with multidimensional tunneling. The RPMD approach yielded results that are generally in better agreement with experimental rate coefficients than the VTST and QCT ones, especially at low temperatures, attributable to its capacity to capture quantum effects such as tunneling and zero-point energy. The theoretical results support one group of existing experiments over the other. In addition, rate coefficients for the D + O3 → OD + O2 reaction are also reported using the same methods, which will allow a stringent assessment of future experimental measurements, thus helping to reduce the uncertainty in the recommended rate coefficients of this reaction.
Collapse
Affiliation(s)
- Qixin Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xixi Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
9
|
Hickson KM, Bray C, Loison JC, Dobrijevic M. A kinetic study of the N( 2D) + C 2H 4 reaction at low temperature. Phys Chem Chem Phys 2020; 22:14026-14035. [PMID: 32558865 DOI: 10.1039/d0cp02083d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronically excited nitrogen atoms N(2D) are important species in the photochemistry of N2 based planetary atmospheres such as Titan. Despite this, few N(2D) reactions have been studied over the appropriate low temperature range. During the present work, rate constants were measured for the N(2D) + ethene (C2H4) reaction using a supersonic flow reactor at temperatures between 50 K and 296 K. Here, a chemical reaction was used to generate N(2D) atoms, which were detected directly by laser induced fluorescence in the vacuum ultraviolet wavelength region. The measured rate constants displayed very little variation as a function of temperature, with substantially larger values than those obtained in previous work. Indeed, considering an average temperature of 170 K for the atmosphere of Titan leads to a rate constant that is almost seven times larger than the currently recommended value. In parallel, electronic structure calculations were performed to provide insight into the reactive process. While earlier theoretical work at a lower level predicted the presence of a barrier for the N(2D) + C2H4 reaction, the present calculations demonstrate that two of the five doublet potential energy surfaces correlating with reagents are likely to be attractive, presenting no barriers for the perpendicular approach of the N atom to the C[double bond, length as m-dash]C bond of ethene. The measured rate constants and new product channels taken from recent dynamical investigations of this process are included in a 1D coupled ion-neutral model of Titan's atmosphere. These simulations indicate that the modeled abundances of numerous nitrogen bearing compounds are noticeably affected by these changes.
Collapse
Affiliation(s)
- Kevin M Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | | | | | | |
Collapse
|
10
|
Song Q, Zhang Q, Meng Q. Revisiting the Gaussian process regression for fitting high-dimensional potential energy surface and its application to the OH + HO2→O2+ H2O reaction. J Chem Phys 2020; 152:134309. [PMID: 32268765 DOI: 10.1063/1.5143544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Qingfei Song
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi’an, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi’an, China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi’an, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi’an, China
| | - Qingyong Meng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi’an, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi’an, China
| |
Collapse
|
11
|
Nuñez-Reyes D, Bray C, Hickson KM, Larrégaray P, Bonnet L, González-Lezana T. Experimental and theoretical studies of the N(2D) + H2 and D2 reactions. Phys Chem Chem Phys 2020; 22:23609-23617. [DOI: 10.1039/d0cp03971c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports the first kinetic measurements of the N(2D) + H2, D2 reactions below 200 K.
Collapse
Affiliation(s)
| | - Cédric Bray
- Université de Bordeaux
- Institut des Sciences Moléculaires
- F-33400 Talence
- France
- CNRS
| | - Kevin M. Hickson
- Université de Bordeaux
- Institut des Sciences Moléculaires
- F-33400 Talence
- France
- CNRS
| | - Pascal Larrégaray
- Université de Bordeaux
- Institut des Sciences Moléculaires
- F-33400 Talence
- France
- CNRS
| | - Laurent Bonnet
- Université de Bordeaux
- Institut des Sciences Moléculaires
- F-33400 Talence
- France
- CNRS
| | | |
Collapse
|
12
|
Nuñez-Reyes D, Hickson KM, Larrégaray P, Bonnet L, González-Lezana T, Bhowmick S, Suleimanov YV. Experimental and Theoretical Study of the O( 1D) + HD Reaction. J Phys Chem A 2019; 123:8089-8098. [PMID: 31464440 DOI: 10.1021/acs.jpca.9b06133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work addresses the kinetics and dynamics of the gas-phase reaction between O(1D) and HD molecules down to low temperature. Here, measurements were performed by using a supersonic flow (Laval nozzle) reactor coupled with pulsed laser photolysis for O(1D) production and pulsed-laser-induced fluorescence for O(1D) detection to obtain rate constants over the 50-300 K range. Additionally, temperature-dependent branching ratios (OD + H/OH + D) were obtained experimentally by comparison of the H/D atom atom yields with those of a reference reaction. In parallel, theoretical rate constants and branching ratios were calculated by using three different techniques; mean potential phase space theory (MPPST), the statistical quantum mechanical method (SQM), and ring polymer molecular dynamics (RPMD). Although the agreement between experimental and theoretical rate constants is reasonably good, with differences not exceeding 30% over the entire temperature range, the theoretical branching ratios derived by the MPPST and SQM methods are as much as 50% larger than the experimental ones. These results are presented in the context of earlier work, while the possible origins of the discrepancies between experiment and theory are discussed.
Collapse
Affiliation(s)
- Dianailys Nuñez-Reyes
- Université de Bordeaux, Institut des Sciences Moléculaires , F-33400 Talence , France.,CNRS, Institut des Sciences Moléculaires , UMR 5255, F-33400 Talence , France
| | - Kevin M Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires , F-33400 Talence , France.,CNRS, Institut des Sciences Moléculaires , UMR 5255, F-33400 Talence , France
| | - Pascal Larrégaray
- Université de Bordeaux, Institut des Sciences Moléculaires , F-33400 Talence , France.,CNRS, Institut des Sciences Moléculaires , UMR 5255, F-33400 Talence , France
| | - Laurent Bonnet
- Université de Bordeaux, Institut des Sciences Moléculaires , F-33400 Talence , France.,CNRS, Institut des Sciences Moléculaires , UMR 5255, F-33400 Talence , France
| | - Tomás González-Lezana
- Instituto de Física Fundamental , CSIC , IFF-CSIC Serrano 123 , 28006 Madrid , Spain
| | - Somnath Bhowmick
- Computation-based Science and Technology Research Center , The Cyprus Institute , 20 Konstantinou Kavafi Street , Nicosia 2121 , Cyprus
| | - Yury V Suleimanov
- Computation-based Science and Technology Research Center , The Cyprus Institute , 20 Konstantinou Kavafi Street , Nicosia 2121 , Cyprus.,Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
13
|
Lu X, Wang X, Fu B, Zhang D. Theoretical Investigations of Rate Coefficients of H + H2O2 → OH + H2O on a Full-Dimensional Potential Energy Surface. J Phys Chem A 2019; 123:3969-3976. [DOI: 10.1021/acs.jpca.9b02526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoxiao Lu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Donghui Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
14
|
Meng Q, Chen J. Ring-polymer molecular dynamics study on rate coefficient of the barrierless OH + CO system at low temperature. J Chem Phys 2019; 150:044307. [PMID: 30709288 DOI: 10.1063/1.5065657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Qingyong Meng
- Department of Applied Chemistry, Northwestern Polytechnical University, Youyi West Road 127, 710072 Xi’an, China
| | - Jun Chen
- iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Siming South Road 422, 361005 Xiamen, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian, China
| |
Collapse
|
15
|
Nuñez-Reyes D, Loison JC, Hickson KM, Dobrijevic M. A low temperature investigation of the N(2D) + CH4, C2H6 and C3H8 reactions. Phys Chem Chem Phys 2019; 21:6574-6581. [DOI: 10.1039/c9cp00798a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Low temperature rate constants for the N(2D) + C2H6, C3H8 reactions are shown to be much smaller than previously thought.
Collapse
Affiliation(s)
- Dianailys Nuñez-Reyes
- Université de Bordeaux
- Institut des Sciences Moléculaires
- UMR 5255
- F-33400 Talence
- France
| | | | - Kevin M. Hickson
- Université de Bordeaux
- Institut des Sciences Moléculaires
- UMR 5255
- F-33400 Talence
- France
| | - Michel Dobrijevic
- Laboratoire d'Astrophysique de Bordeaux
- Université de Bordeaux
- CNRS, B18N
- allée Geoffroy Saint-Hilaire
- F-33615 Pessac
| |
Collapse
|
16
|
Nuñez-Reyes D, Loison JC, Hickson KM, Dobrijevic M. Rate constants for the N(2D) + C2H2 reaction over the 50–296 K temperature range. Phys Chem Chem Phys 2019; 21:22230-22237. [DOI: 10.1039/c9cp04170b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of metastable atomic nitrogen N(2D) are important processes in the gas-phase chemistry of several planetary atmospheres.
Collapse
Affiliation(s)
- Dianailys Nuñez-Reyes
- Université de Bordeaux
- Institut des Sciences Moléculaires
- UMR 5255
- F-33400 Talence
- France
| | | | - Kevin M. Hickson
- Université de Bordeaux
- Institut des Sciences Moléculaires
- UMR 5255
- F-33400 Talence
- France
| | - Michel Dobrijevic
- Laboratoire d'Astrophysique de Bordeaux
- Université de Bordeaux
- CNRS
- F-33615 Pessac
- France
| |
Collapse
|
17
|
Lu X, Meng Q, Wang X, Fu B, Zhang DH. Rate coefficients of the H + H2O2→ H2+ HO2reaction on an accurate fundamental invariant-neural network potential energy surface. J Chem Phys 2018; 149:174303. [PMID: 30409010 DOI: 10.1063/1.5063613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaoxiao Lu
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Qingyong Meng
- Department of Applied Chemistry, Northwestern Polytechnical University, Youyi West Road 127, Xi’an 710072, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
18
|
Meng Q. Ring-Polymer Molecular Dynamics with Coarse-Grained Treatment of the Rate Coefficients of Chlorine Atom Reactions with Methane, Ethane, and Propane. J Phys Chem A 2018; 122:8320-8325. [PMID: 30281311 DOI: 10.1021/acs.jpca.8b08052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingyong Meng
- Department of Applied Chemistry, Northwestern Polytechnical University, Youyi West Road 127, 710072 Xi’an, China
- State Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian, China
| |
Collapse
|
19
|
Meng Q. Ring-polymer molecular dynamics study on rate coefficients of hydrogen abstraction of methane: A reduced-dimensional model. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.06.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Nuñez-Reyes D, Hickson KM. Rate Constants and H-Atom Product Yields for the Reactions of O(1D) Atoms with Ethane and Acetylene from 50 to 296 K. J Phys Chem A 2018; 122:4696-4703. [DOI: 10.1021/acs.jpca.8b02267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dianailys Nuñez-Reyes
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, F-33400 Talence, France
| | - Kevin M. Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, F-33400 Talence, France
| |
Collapse
|
21
|
Nuñez-Reyes D, Hickson KM. Kinetics of the Gas-Phase O(1D) + CO2 and C(1D) + CO2 Reactions over the 50–296 K Range. J Phys Chem A 2018; 122:4002-4008. [DOI: 10.1021/acs.jpca.8b01964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dianailys Nuñez-Reyes
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, F-33400 Talence, France
| | - Kevin M. Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, F-33400 Talence, France
| |
Collapse
|
22
|
Nuñez-Reyes D, Kłos J, Alexander MH, Dagdigian PJ, Hickson KM. Experimental and theoretical investigation of the temperature dependent electronic quenching of O(1D) atoms in collisions with Kr. J Chem Phys 2018; 148:124311. [DOI: 10.1063/1.5021885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dianailys Nuñez-Reyes
- Institut des Sciences Moléculaires, Université de Bordeaux, UMR 5255, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France
| | - Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
| | - Millard H. Alexander
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742-2021, USA
| | - Paul J. Dagdigian
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | - Kevin M. Hickson
- Institut des Sciences Moléculaires, Université de Bordeaux, UMR 5255, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France
| |
Collapse
|
23
|
Nuñez-Reyes D, Hickson KM, Larrégaray P, Bonnet L, González-Lezana T, Suleimanov YV. A combined theoretical and experimental investigation of the kinetics and dynamics of the O( 1D) + D 2 reaction at low temperature. Phys Chem Chem Phys 2018; 20:4404-4414. [PMID: 29372194 DOI: 10.1039/c7cp07843a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The O(1D) + H2 reaction is a prototype for simple atom-diatom insertion type mechanisms considered to involve deep potential wells. While exact quantum mechanical methods can be applied to describe the dynamics, such calculations are challenging given the numerous bound quantum states involved. Consequently, efforts have been made to develop alternative theoretical strategies to portray accurately the reactive process. Here we report an experimental and theoretical investigation of the O(1D) + D2 reaction over the 50-296 K range. The calculations employ three conceptually different approaches - mean potential phase space theory, the statistical quantum mechanical method and ring polymer molecular dynamics. The calculated rate constants are in excellent agreement over the entire temperature range, exhibiting only weak temperature dependence. The agreement between experiment and theory is also very good, with discrepancies smaller than 26%. Taken together, the present and previous theoretical results validate the hypothesis that long-lived complex formation dominates the reaction dynamics at low temperature.
Collapse
Affiliation(s)
- Dianailys Nuñez-Reyes
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France.
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Hickson KM, Suleimanov YV. Low-Temperature Experimental and Theoretical Rate Constants for the O(1D) + H2 Reaction. J Phys Chem A 2017; 121:1916-1923. [DOI: 10.1021/acs.jpca.7b00722] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin M. Hickson
- Institut
des Sciences Moléculaires, Université de Bordeaux, F-33400 Talence, France
- Institut
des Sciences Moléculaires, CNRS, F-33400 Talence, France
| | - Yury V. Suleimanov
- Computation-based
Science and Technology Research Center, Cyprus Institute, 20 Kavafi Strasse, Nicosia 2121, Cyprus
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Meng Q, Chen J. Ring-polymer molecular dynamics studies on the rate coefficient of the abstraction channel of hydrogen plus ethane, propane, and dimethyl ether. J Chem Phys 2017; 146:024108. [PMID: 28088140 DOI: 10.1063/1.4973831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Qingyong Meng
- Department of Applied Chemistry, Northwestern Polytechnical University, Youyi West Road 127, 710072 Xi’an, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian, China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian, China
- iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Siming South Road 422, 361005 Xiamen, China
| |
Collapse
|
27
|
Fu B, Shan X, Zhang DH, Clary DC. Recent advances in quantum scattering calculations on polyatomic bimolecular reactions. Chem Soc Rev 2017; 46:7625-7649. [DOI: 10.1039/c7cs00526a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review surveys quantum scattering calculations on chemical reactions of polyatomic molecules in the gas phase published in the last ten years.
Collapse
Affiliation(s)
- Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiao Shan
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - David C. Clary
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|
28
|
Hickson KM, Suleimanov YV. An experimental and theoretical investigation of the C(1D) + D2 reaction. Phys Chem Chem Phys 2017; 19:480-486. [DOI: 10.1039/c6cp07381f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rate constants derived from ring polymer molecular dynamics calculations confirm the validity of this method for studying low-temperature complex-forming reactions
Collapse
Affiliation(s)
- Kevin M. Hickson
- Université de Bordeaux
- Institut des Sciences Moléculaires
- F-33400 Talence
- France
- CNRS
| | - Yury V. Suleimanov
- Computation-based Science and Technology Research Center
- Cyprus Institute
- Nicosia 2121
- Cyprus
- Department of Chemical Engineering
| |
Collapse
|