1
|
Ortiz de Luzuriaga I, Sánchez-González Á, Synoradzki W, Lopez X, Gil A. Unravelling the binding affinity and selectivity of molybdenum(II) phenanthroline complexes with DNA G-quadruplexes by using linear-scaling DFT studies. The important role of ancillary ligands. Phys Chem Chem Phys 2022; 24:25918-25929. [PMID: 36260061 DOI: 10.1039/d2cp02241a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We have used near linear-scaling density functional theory (LS-DFT) methods including dispersion, for the first time, to study the interaction of two isomers, equatorial (Eq) and axial (Ax), of the [Mo(η3-C3H5)Br(CO)2(phen)] metal complex with the DNA G-quadruplexes (GQ) to gain insight into its cytotoxicity. The LMKLL/DZDP level of calculation, which includes van der Waals contributions, with the SIESTA software was used to treat by means of first-principles computations the whole biological studied model system with ∼1000 atoms. Computed formation energies point to systems containing the Ax isomer as the most stable although the nearest system in energy containing the Eq isomer is only 7.5 kcal mol-1 above. On the other hand, the energy decomposition analysis (EDA) favours interaction energies for the systems containing the Eq isomer. However, when solvent effects are taken into account the systems containing the Ax isomer are again the most stable. This Ax isomer was found interacting by means of end-stacking with the GQ and surprisingly totally inside the non-canonical secondary structure, where all the ligands of the metal complex produce several weak interactions with the DNA structure. On the other hand, the Eq isomer prefers to interact from outside by means of intercalation in which the ancillary ligands also have some role in the interaction. Such features and comparison with the results regarding the interaction of the [Mo(η3-C3H5)Br(CO)2(phen)] metal complex with duplex DNA suggest that the [Mo(η3-C3H5)Br(CO)2(phen)] would have a higher affinity and eventual selectivity for non-canonical DNA GQ structures.
Collapse
Affiliation(s)
- Iker Ortiz de Luzuriaga
- CIC-nanoGUNE BRTA, Tolosa Hiribidea 76, E-20018, Donostia - San Sebastián, Euskadi, Spain.
- Polímero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, 20080, Donostia, Euskadi, Spain
| | - Ángel Sánchez-González
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Wojciech Synoradzki
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Xabier Lopez
- Polímero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, 20080, Donostia, Euskadi, Spain
- Donostia International Physics Center (DIPC), P. K. 1072, 20080, Donostia, Euskadi, Spain
| | - Adrià Gil
- CIC-nanoGUNE BRTA, Tolosa Hiribidea 76, E-20018, Donostia - San Sebastián, Euskadi, Spain.
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
- ARAID Foundation, Zaragoza, Spain
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Consejo Superior de Investigaciones Científicas (CSIC). Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
2
|
Asha H, Stadlbauer P, Martínez-Fernández L, Banáš P, Šponer J, Improta R, Esposito L. Early steps of oxidative damage in DNA quadruplexes are position-dependent: Quantum mechanical and molecular dynamics analysis of human telomeric sequence containing ionized guanine. Int J Biol Macromol 2022; 194:882-894. [PMID: 34838862 DOI: 10.1016/j.ijbiomac.2021.11.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
Abstract
Guanine radical cation (G•+) is a key intermediate in many oxidative processes occurring in nucleic acids. Here, by combining mixed Quantum Mechanical/Molecular Mechanics calculations and Molecular Dynamics (MD) simulations, we study how the structural behaviour of a tract GGG(TTAGGG)3 (hereafter Tel21) of the human telomeric sequence, folded in an antiparallel quadruple helix, changes when one of the G bases is ionized to G•+ (Tel21+). Once assessed that the electron-hole is localized on a single G, we perform MD simulations of twelve Tel21+ systems, differing in the position of G•+ in the sequence. When G•+ is located in the tetrad adjacent to the diagonal loop, we observe substantial structural rearrangements, which can decrease the electrostatic repulsion with the inner Na+ ions and increase the solvent exposed surface of G•+. Analysis of solvation patterns of G•+ provides new insights on the main reactions of G•+, i.e. the deprotonation at two different sites and hydration at the C8 atom, the first steps of the processes producing 8oxo-Guanine. We suggest the main structural determinants of the relative reactivity of each position and our conclusions, consistent with the available experimental trends, can help rationalizing the reactivity of other G-quadruplex topologies.
Collapse
Affiliation(s)
- Haritha Asha
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80136 Napoli, Italy
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Lara Martínez-Fernández
- Departamento de Quimica, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autonoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 8, 779 00 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80136 Napoli, Italy.
| | - Luciana Esposito
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80136 Napoli, Italy.
| |
Collapse
|
3
|
Ortiz de Luzuriaga I, Lopez X, Gil A. Learning to Model G-Quadruplexes: Current Methods and Perspectives. Annu Rev Biophys 2021; 50:209-243. [PMID: 33561349 DOI: 10.1146/annurev-biophys-060320-091827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G-quadruplexes have raised considerable interest during the past years for the development of therapies against cancer. These noncanonical structures of DNA may be found in telomeres and/or oncogene promoters, and it has been observed that the stabilization of such G-quadruplexes may disturb tumor cell growth. Nevertheless, the mechanisms leading to folding and stabilization of these G-quadruplexes are still not well established, and they are the focus of much current work in this field. In seminal works, stabilization was observed to be produced by cations. However, subsequent studies showed that different kinds of small molecules, from planar and nonplanar organic molecules to square-planar and octahedral metal complexes, may also lead to the stabilization of G-quadruplexes. Thus, the comprehension and rationalization of the interaction of these small molecules with G-quadruplexes are also important topics of current interest in medical applications. To shed light on the questions arising from the literature on the formation of G-quadruplexes, their stabilization, and their interaction with small molecules, synergies between experimental studies and computational works are needed. In this review, we mainly focus on in silico approaches and provide a broad compilation of different leading studies carried out to date by different computational methods. We divide these methods into twomain categories: (a) classical methods, which allow for long-timescale molecular dynamics simulations and the corresponding analysis of dynamical information, and (b) quantum methods (semiempirical, quantum mechanics/molecular mechanics, and density functional theory methods), which allow for the explicit simulation of the electronic structure of the system but, in general, are not capable of being used in long-timescale molecular dynamics simulations and, therefore, give a more static picture of the relevant processes.
Collapse
Affiliation(s)
- Iker Ortiz de Luzuriaga
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain
| | - Xabier Lopez
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain.,Donostia International Physics Center, 20018 Donostia, Spain
| | - Adrià Gil
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| |
Collapse
|
4
|
Martínez-Fernández L, Esposito L, Improta R. Studying the excited electronic states of guanine rich DNA quadruplexes by quantum mechanical methods: main achievements and perspectives. Photochem Photobiol Sci 2020; 19:436-444. [DOI: 10.1039/d0pp00065e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calculations are providing more and more useful insights into the interaction between light and DNA quadruplexes.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química
- Facultad de Ciencias
- Modulo 13 Universidad Autónoma de Madrid
- Campus de Excelencia UAM-CSIC Cantoblanco
- 28049 Madrid
| | | | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini
- CNR
- I-80134 Napoli
- Italy
| |
Collapse
|
5
|
Martínez-Fernández L, Improta R. Sequence dependence on DNA photochemistry: a computational study of photodimerization pathways in TpdC and dCpT dinucleotides. Photochem Photobiol Sci 2018; 17:586-591. [PMID: 29624198 DOI: 10.1039/c8pp00040a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The excited states involved in the main photodimerization paths in TpdC and dCpT are mapped by PCM/TD-M052X calculations, considering different dinucleotide conformers. As for TT steps, a cyclobutane pyrimidine dimer (CPD) is formed on the PES of the lowest energy exciton, delocalized over two stacked pyrimidines; 6-4 pyrimidine-pyrimidone (64-PP) adduct's formation involves instead a 5'-ter → 3'-ter charge transfer state. For dCpT, 64-PP dimerization occurs via a two-step reaction, which proceeds through an oxetane intermediate. For TpdC, instead, the final 64-PP product is obtained in a single step and it is as stable as the CPD photoproduct, explaining the relatively large yield of 64-PP found experimentally for TC steps in DNA.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Consiglio Nationale delle Ricerche, Istituto di Biostrutture e Bioimmagini, 80134 Naples, Italy. and LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Roberto Improta
- Consiglio Nationale delle Ricerche, Istituto di Biostrutture e Bioimmagini, 80134 Naples, Italy. and LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Lu C, Smith-Carpenter JE, Taylor JSA. Evidence for Reverse Hoogsteen Hairpin Intermediates in the Photocrosslinking of Human Telomeric DNA Sequences. Photochem Photobiol 2018; 94:685-697. [PMID: 29418001 DOI: 10.1111/php.12898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/04/2018] [Indexed: 12/28/2022]
Abstract
UVB irradiation of human telomeric d(GGGTTA)3 GGG sequences in potassium ion solution crosslinks the first and third TTA segments through anti cyclobutane pyrimidine dimer (CPD) formation. The photocrosslinking reaction was first proposed to occur through a form 3 two-tetrad G-quadruplex in which the lateral four-nucleotide GTTA loop can interact with an adjacent TTA loop. Curiously, the reaction does not occur with sodium ion, which was explained by the formation of a basket structure which only has three-nucleotide TTA loops that cannot interact. Sequences known or expected to favor the two-tetrad basket did not show enhanced photocrosslinking, suggesting that some other structure was the reactive intermediate. Herein, we report that anti CPDs form in human telomeric DNA sequences with lithium ion that is known to disfavor G-quadruplex formation, as well as with potassium ion when the bases are modified to interfere with G-quartet formation. We also show that anti CPDs form in sequences containing A's in place of G's that cannot form Hoogsteen hairpins, but can form reverse Hoogsteen hairpins. These results suggest that reverse Hoogsteen hairpins may play a hitherto unrecognized role in the biology and photoreactivity of DNA in telomeres, and possibly in other purine-rich sequences found in regulatory regions.
Collapse
Affiliation(s)
- Chen Lu
- Department of Chemistry, Washington University, St. Louis, MO
| | | | | |
Collapse
|
7
|
Chakraborty P, Karsili TNV, Marchetti B, Matsika S. Mechanistic insights into photoinduced damage of DNA and RNA nucleobases in the gas phase and in bulk solution. Faraday Discuss 2018; 207:329-350. [DOI: 10.1039/c7fd00188f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanistic details of well-known photohydrate lesions are explored using state-of-the-art computational methods.
Collapse
|
8
|
Conti I, Martínez-Fernández L, Esposito L, Hofinger S, Nenov A, Garavelli M, Improta R. Multiple Electronic and Structural Factors Control Cyclobutane Pyrimidine Dimer and 6-4 Thymine-Thymine Photodimerization in a DNA Duplex. Chemistry 2017; 23:15177-15188. [PMID: 28809462 DOI: 10.1002/chem.201703237] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 11/09/2022]
Abstract
The T-T photodimerization paths leading to the formation of cyclobutane pyrimidine dimer (CPD) and 6-4 pyrimidine pyrimidone (64-PP), the two main DNA photolesions, have been resolved for a T-T step in a DNA duplex by two complementary state-of-the-art quantum mechanical approaches: QM(CASPT2//CASSCF)/MM and TD-DFT/PCM. Based on the analysis of several different representative structures, we define a new-ensemble of cooperating geometrical and electronic factors (besides the distance between the reacting bonds) ruling T-T photodimerization in DNA. CPD is formed by a barrierless path on an exciton state delocalized over the two bases. Large interbase stacking and shift values, together with a small pseudorotation phase angle for T at the 3'-end, favor this reaction. The oxetane intermediate, leading to a 64-PP adduct, is formed on a singlet T→T charge-transfer state and is favored by a large interbase angle and slide values. A small energy barrier (<0.3 eV) is associated to this path, likely contributing to the smaller quantum yield observed for this process. Eventually, a clear directionality is always shown by the electronic excitation characterizing the singlet photoactive state driving the photodimerization process: an exciton that is more localized on T3 and a 5'-T→3'-T charge transfer for CPD and oxetane formation, respectively, thus calling for specific electronic constraints.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica Industriale "T. Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | | | - Luciana Esposito
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Siegfried Hofinger
- TU Wien, Zentraler Informatikdienst, Wiedner Hauptstrasse 8-10, 1040, Wien, Austria.,Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49331-1295, USA
| | - Artur Nenov
- Dipartimento di Chimica Industriale "T. Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "T. Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Napoli, Italy.,LIDYL, CEA, CNRS, Université Paris, Saclay, 91191, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Banyasz A, Martínez-Fernández L, Balty C, Perron M, Douki T, Improta R, Markovitsi D. Absorption of Low-Energy UV Radiation by Human Telomere G-Quadruplexes Generates Long-Lived Guanine Radical Cations. J Am Chem Soc 2017; 139:10561-10568. [PMID: 28737902 DOI: 10.1021/jacs.7b05931] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Telomeres, which are involved in cell division, carcinogenesis, and aging and constitute important therapeutic targets, are prone to oxidative damage. This propensity has been correlated with the presence of guanine-rich sequences, capable of forming four-stranded DNA structures (G-quadruplexes). Here, we present the first study on oxidative damage of human telomere G-quadruplexes without mediation of external molecules. Our investigation has been performed for G-quadruplexes formed by folding of GGG(TTAGGG)3 single strands in buffered solutions containing Na+ cations (TEL21/Na+). Associating nanosecond time-resolved spectroscopy and quantum mechanical calculations (TD-DFT), it focuses on the primary species, ejected electrons and guanine radicals, generated upon absorption of UV radiation directly by TEL21/Na+. We show that, at 266 nm, corresponding to an energy significantly lower than the guanine ionization potential, the one-photon ionization quantum yield is 4.5 × 10-3. This value is comparable to that of cyclobutane thymine dimers (the major UV-induced lesions) in genomic DNA; the quantum yield of these dimers in TEL21/Na+ is found to be (1.1 ± 0.1) × 10-3. The fate of guanine radicals, generated in equivalent concentration with that of ejected electrons, is followed over 5 orders of magnitude of time. Such a quantitative approach reveals that an important part of radical cation population survives up to a few milliseconds, whereas radical cations produced by chemical oxidants in various DNA systems are known to deprotonate, at most, within a few microseconds. Under the same experimental conditions, neither one-photon ionization nor long-lived radical cations are detected for the telomere repeat TTAGGG in single-stranded configuration, showing that secondary structure plays a key role in these processes. Finally, two types of deprotonated radicals are identified: on the one hand, (G-H2)• radicals, stable at early times, and on the other hand, (G-H1)• radicals, appearing within a few milliseconds and decaying with a time constant of ∼50 ms.
Collapse
Affiliation(s)
- Akos Banyasz
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
| | - Lara Martínez-Fernández
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche , Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Clémence Balty
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
| | - Marion Perron
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
| | - Thierry Douki
- CEA, INAC-SyMMES Laboratoire des Lésions des Acides Nucléiques, F-38000 Grenoble, France
| | - Roberto Improta
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France.,Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche , Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
| |
Collapse
|