1
|
Zhou LL, Li SQ, Ma C, Fu XP, Xu YS, Wang WW, Dong H, Jia CJ, Wang FR, Yan CH. Promoting Molecular Exchange on Rare-Earth Oxycarbonate Surfaces to Catalyze the Water-Gas Shift Reaction. J Am Chem Soc 2023; 145:2252-2263. [PMID: 36657461 PMCID: PMC9896556 DOI: 10.1021/jacs.2c10326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is highly desirable to fabricate an accessible catalyst surface that can efficiently activate reactants and desorb products to promote the local surface reaction equilibrium in heterogeneous catalysis. Herein, rare-earth oxycarbonates (Ln2O2CO3, where Ln = La and Sm), which have molecular-exchangeable (H2O and CO2) surface structures according to the ordered layered arrangement of Ln2O22+ and CO32- ions, are unearthed. On this basis, a series of Ln2O2CO3-supported Cu catalysts are prepared through the deposition precipitation method, which provides excellent catalytic activity and stability for the water-gas shift (WGS) reaction. Density functional theory calculations combined with systematic experimental characterizations verify that H2O spontaneously dissociates on the surface of Ln2O2CO3 to form hydroxyl by eliminating the carbonate through the release of CO2. This interchange efficiently promotes the WGS reaction equilibrium shift on the local surface and prevents the carbonate accumulation from hindering the active sites. The discovery of the unique layered structure provides a so-called "self-cleaning" active surface for the WGS reaction and opens new perspectives about the application of rare-earth oxycarbonate nanomaterials in C1 chemistry.
Collapse
Affiliation(s)
- Lu-Lu Zhou
- Key
Laboratory for Colloid and Interface Chemistry, Key Laboratory of
Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Shan-Qing Li
- School
of Materials and Environmental Engineering, Chizhou University, Chizhou247000, China
| | - Chao Ma
- College
of Materials Science and Engineering, Hunan
University, Changsha410082, China
| | - Xin-Pu Fu
- Key
Laboratory for Colloid and Interface Chemistry, Key Laboratory of
Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Yi-Shuang Xu
- Key
Laboratory for Colloid and Interface Chemistry, Key Laboratory of
Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Wei-Wei Wang
- Key
Laboratory for Colloid and Interface Chemistry, Key Laboratory of
Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Hao Dong
- Beijing
National Laboratory for Molecular Sciences, State Key Lab of Rare
Earth Materials Chemistry and Applications, PKU-HKU Joint Lab in Rare
Earth Materials and Bioinorganic Chemistry, Peking University, Beijing100871, China
| | - Chun-Jiang Jia
- Key
Laboratory for Colloid and Interface Chemistry, Key Laboratory of
Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China,
| | - Feng Ryan Wang
- Department
of Chemical Engineering, University College
London, LondonWC1E 7JE, U.K.,
| | - Chun-Hua Yan
- Beijing
National Laboratory for Molecular Sciences, State Key Lab of Rare
Earth Materials Chemistry and Applications, PKU-HKU Joint Lab in Rare
Earth Materials and Bioinorganic Chemistry, Peking University, Beijing100871, China,
| |
Collapse
|
2
|
Zou XY, Mi L, Zuo ZJ, Gao ZH, Huang W. DFT study the water-gas shift reaction over Cu/α-MoC surface. J Mol Model 2020; 26:237. [PMID: 32812072 DOI: 10.1007/s00894-020-04502-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/03/2020] [Indexed: 11/26/2022]
Abstract
Cu-based catalysts have been widely used for water-gas shift reaction (WGS, CO + H2O → CO2 + H2), and α-MoC support also shows the good performance for the reaction. Therefore, WGS reaction is systematically studied over Cu/α-MoC by using density functional theory (DFT). DFT result shows the strong metal-support interaction between Cu and α-MoC(111) support. As a result, an extensive tensile strain is introduced in the Cu lattice due to α-MoC support, and Cu 3d band center shifts to Fermi level. However, the strong metal-support interaction does not lead to significant polarization of the Cu/α-MoC surface due to the less charge transfer from Mo to Cu. For the WGS reaction, small Cu particles on α-MoC(111) are likely to facilitate the reaction. At the interface of Cu-α-MoC(111), oxygen stabilizes the dissociated *H, which is benefit of H2O scission. Then, the activity increases compared with Cu(111) surface. In general, small Cu particles on α-MoC support also have good activity for WGS reaction compared with Au deposition on α-MoC. Graphical abstract.
Collapse
Affiliation(s)
- Xue-Yan Zou
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Le Mi
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Zhi-Jun Zuo
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.
| | - Zhi-Hua Gao
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Wei Huang
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.
| |
Collapse
|
3
|
Yan T, Wang L, Liang Y, Makaremi M, Wood TE, Dai Y, Huang B, Jelle AA, Dong Y, Ozin GA. Polymorph selection towards photocatalytic gaseous CO 2 hydrogenation. Nat Commun 2019; 10:2521. [PMID: 31175311 PMCID: PMC6555785 DOI: 10.1038/s41467-019-10524-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/16/2019] [Indexed: 11/23/2022] Open
Abstract
Titanium dioxide is the only known material that can enable gas-phase CO2 photocatalysis in its anatase and rutile polymorphic forms. Materials engineering of polymorphism provides a useful strategy for optimizing the performance metrics of a photocatalyst. In this paper, it is shown that the less well known rhombohedral polymorph of indium sesquioxide, like its well-documented cubic polymorph, is a CO2 hydrogenation photocatalyst for the production of CH3OH and CO. Significantly, the rhombohedral polymorph exhibits higher activity, superior stability and improved selectivity towards CH3OH over CO. These gains in catalyst performance originate in the enhanced acidity and basicity of surface frustrated Lewis pairs in the rhombohedral form. Polymorphs, compounds with identical chemical stoichiometries yet different atomic configurations, expand the range of potential chemical properties and new applications. Here, authors show rhombohedral indium oxides to be highly active and selective for photocatalytic CO2 hydrogenation.
Collapse
Affiliation(s)
- Tingjiang Yan
- The Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China. .,Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| | - Lu Wang
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Yan Liang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Meysam Makaremi
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Thomas E Wood
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China.
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Abdinoor A Jelle
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Yuchan Dong
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Geoffrey A Ozin
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
4
|
Jia J, Qian C, Dong Y, Li YF, Wang H, Ghoussoub M, Butler KT, Walsh A, Ozin GA. Heterogeneous catalytic hydrogenation of CO2by metal oxides: defect engineering – perfecting imperfection. Chem Soc Rev 2017. [DOI: 10.1039/c7cs00026j] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review, we discuss how metal oxides with designed defects can be synthesized and engineered, to enable heterogeneous catalytic hydrogenation of gaseous carbon dioxide to chemicals and fuels.
Collapse
Affiliation(s)
- Jia Jia
- Solar Fuels Team and Materials Chemistry Group
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Chenxi Qian
- Solar Fuels Team and Materials Chemistry Group
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Yuchan Dong
- Solar Fuels Team and Materials Chemistry Group
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Young Feng Li
- Solar Fuels Team and Materials Chemistry Group
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Hong Wang
- Solar Fuels Team and Materials Chemistry Group
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Mireille Ghoussoub
- Solar Fuels Team and Materials Chemistry Group
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | | | - Aron Walsh
- Department of Materials
- Imperial College London
- London
- UK
| | - Geoffrey A. Ozin
- Solar Fuels Team and Materials Chemistry Group
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| |
Collapse
|